{"title":"Finding Rule-Interpretable Non-Negative Data Representation","authors":"Matej Mihelčić;Pauli Miettinen","doi":"10.1109/TKDE.2025.3538327","DOIUrl":null,"url":null,"abstract":"Non-negative Matrix Factorization (NMF) is an intensively used technique for obtaining parts-based, lower dimensional and non-negative representation. Researchers in biology, medicine, pharmacy and other fields often prefer NMF over other dimensionality reduction approaches (such as PCA) because the non-negativity of the approach naturally fits the characteristics of the domain problem and its results are easier to analyze and understand. Despite these advantages, obtaining exact characterization and interpretation of the NMF’s latent factors can still be difficult due to their numerical nature. Rule-based approaches, such as rule mining, conceptual clustering, subgroup discovery and redescription mining, are often considered more interpretable but lack lower-dimensional representation of the data. We present a version of the NMF approach that merges rule-based descriptions with advantages of part-based representation offered by the NMF. Given the numerical input data with non-negative entries and a set of rules with high entity coverage, the approach creates the lower-dimensional non-negative representation of the input data in such a way that its factors are described by the appropriate subset of the input rules. In addition to revealing important attributes for latent factors, their interaction and value ranges, this approach allows performing focused embedding potentially using multiple overlapping target labels.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2538-2549"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10887020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10887020/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Non-negative Matrix Factorization (NMF) is an intensively used technique for obtaining parts-based, lower dimensional and non-negative representation. Researchers in biology, medicine, pharmacy and other fields often prefer NMF over other dimensionality reduction approaches (such as PCA) because the non-negativity of the approach naturally fits the characteristics of the domain problem and its results are easier to analyze and understand. Despite these advantages, obtaining exact characterization and interpretation of the NMF’s latent factors can still be difficult due to their numerical nature. Rule-based approaches, such as rule mining, conceptual clustering, subgroup discovery and redescription mining, are often considered more interpretable but lack lower-dimensional representation of the data. We present a version of the NMF approach that merges rule-based descriptions with advantages of part-based representation offered by the NMF. Given the numerical input data with non-negative entries and a set of rules with high entity coverage, the approach creates the lower-dimensional non-negative representation of the input data in such a way that its factors are described by the appropriate subset of the input rules. In addition to revealing important attributes for latent factors, their interaction and value ranges, this approach allows performing focused embedding potentially using multiple overlapping target labels.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.