Ran Li;Chuan Huang;Xiaoqi Qin;Dong Yang;Xinyao Nie
{"title":"Multicast Scheduling Over Multiple Channels: A Distribution-Embedding Deep Reinforcement Learning Method","authors":"Ran Li;Chuan Huang;Xiaoqi Qin;Dong Yang;Xinyao Nie","doi":"10.1109/TMC.2024.3514169","DOIUrl":null,"url":null,"abstract":"Multicasting is an efficient technique for simultaneously transmitting common messages from the base station (BS) to multiple mobile users (MUs). Multicast scheduling over multiple channels, which aims to jointly minimize the energy consumption of the BS and the latency of serving asynchronized requests from the MUs, is formulated as an infinite-horizon Markov decision process (MDP) problem with a large discrete action space, multiple time-varying constraints, and multiple time-invariant constraints. To address these challenges, this paper proposes a novel distribution-embedding multi-agent proximal policy optimization (DE-MAPPO) algorithm, which consists of one modified MAPPO and one distribution-embedding module. The former one handles the large discrete action space and time-varying constraints by modifying the structure of the actor networks and the training kernel of the conventional MAPPO; and the latter one iteratively adjusts the action distribution to satisfy the time-invariant constraints. Moreover, a performance upper bound of the considered MDP is derived by solving a two-step optimization problem. Finally, numerical results demonstrate that our proposed algorithm outperforms the existing ones in terms of applicability, effectiveness, and robustness, and achieves comparable performance to the derived upper bound.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"3502-3519"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787070/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multicasting is an efficient technique for simultaneously transmitting common messages from the base station (BS) to multiple mobile users (MUs). Multicast scheduling over multiple channels, which aims to jointly minimize the energy consumption of the BS and the latency of serving asynchronized requests from the MUs, is formulated as an infinite-horizon Markov decision process (MDP) problem with a large discrete action space, multiple time-varying constraints, and multiple time-invariant constraints. To address these challenges, this paper proposes a novel distribution-embedding multi-agent proximal policy optimization (DE-MAPPO) algorithm, which consists of one modified MAPPO and one distribution-embedding module. The former one handles the large discrete action space and time-varying constraints by modifying the structure of the actor networks and the training kernel of the conventional MAPPO; and the latter one iteratively adjusts the action distribution to satisfy the time-invariant constraints. Moreover, a performance upper bound of the considered MDP is derived by solving a two-step optimization problem. Finally, numerical results demonstrate that our proposed algorithm outperforms the existing ones in terms of applicability, effectiveness, and robustness, and achieves comparable performance to the derived upper bound.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.