Annotated tweet data of mixed Wolof-French for detecting Obnoxious messages

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Ibrahima Ndao , Khadim Dramé , Gorgoumack Sambe , Gayo Diallo
{"title":"Annotated tweet data of mixed Wolof-French for detecting Obnoxious messages","authors":"Ibrahima Ndao ,&nbsp;Khadim Dramé ,&nbsp;Gorgoumack Sambe ,&nbsp;Gayo Diallo","doi":"10.1016/j.dib.2025.111500","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic detection of obnoxious (abusive) messages on social networks is complex, especially for low-resource languages and in the case of mixed code, such as Wolof-French. This phenomenon is common in Senegalese tweets, but there is a lack of annotated data to facilitate this task. To fill this gap, we created AWOFRO, the first annotated corpus of 3510 tweets in mixed code. We analysed this corpus and validated the annotations using measures such as Cohen's Kappa.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111500"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235234092500232X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic detection of obnoxious (abusive) messages on social networks is complex, especially for low-resource languages and in the case of mixed code, such as Wolof-French. This phenomenon is common in Senegalese tweets, but there is a lack of annotated data to facilitate this task. To fill this gap, we created AWOFRO, the first annotated corpus of 3510 tweets in mixed code. We analysed this corpus and validated the annotations using measures such as Cohen's Kappa.
附加注释的沃洛夫语-法语混合语推文数据用于检测厌恶信息
自动检测社交网络上令人讨厌的(辱骂的)消息是很复杂的,特别是对于低资源语言和混合代码的情况,如Wolof-French。这种现象在塞内加尔的推文中很常见,但缺乏注释数据来促进这项任务。为了填补这一空白,我们创建了AWOFRO,这是混合代码中3510条tweet的第一个带注释的语料库。我们分析了这个语料库,并使用Cohen’s Kappa等方法验证了注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信