Kory Kreimeyer , Jonathan Spiker , Oanh Dang , Suranjan De , Robert Ball , Taxiarchis Botsis
{"title":"Deduplicating the FDA adverse event reporting system with a novel application of network-based grouping","authors":"Kory Kreimeyer , Jonathan Spiker , Oanh Dang , Suranjan De , Robert Ball , Taxiarchis Botsis","doi":"10.1016/j.jbi.2025.104824","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To improve the reliability of data mining for product safety concerns in the Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) by robustly identifying duplicate reports describing the same patient experience.</div></div><div><h3>Materials and methods</h3><div>A duplicate detection algorithm based on a probabilistic record linkage algorithm, including features extracted from report narratives, and designed to support FAERS case safety review as part of the Information Visualization Platform (InfoViP) has been upgraded into a full deduplication pipeline for the entire FAERS database. The pipeline contains several new and updated components, including a network analysis-based community detection routine for breaking up sparsely connected groups of duplicates constructed from chains of pairwise comparisons. The pipeline was applied to all 29 million FAERS reports to assemble groups of duplicate cases.</div></div><div><h3>Results</h3><div>The pipeline was evaluated on 12 human expert adjudicated data sets with a total of 2300 reports and was found to have better overall performance than the current tool used at the FDA for labeling duplicates on 10 of them, with F1 scores ranging from 0.36 to 0.93, with half above 0.75. Because minimizing false discovery increases human expert review efficiency, the improved deduplication pipeline was applied to all historic and daily incoming FAERS reports at FDA and identified about 5 million reports as duplicates.</div></div><div><h3>Conclusions</h3><div>The InfoViP deduplication pipeline is operating at FDA to identify duplicate case reports in FAERS and provide deduplicated input for improved efficiency and accuracy of safety review operations like adverse event data mining calculations.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"165 ","pages":"Article 104824"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S153204642500053X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To improve the reliability of data mining for product safety concerns in the Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) by robustly identifying duplicate reports describing the same patient experience.
Materials and methods
A duplicate detection algorithm based on a probabilistic record linkage algorithm, including features extracted from report narratives, and designed to support FAERS case safety review as part of the Information Visualization Platform (InfoViP) has been upgraded into a full deduplication pipeline for the entire FAERS database. The pipeline contains several new and updated components, including a network analysis-based community detection routine for breaking up sparsely connected groups of duplicates constructed from chains of pairwise comparisons. The pipeline was applied to all 29 million FAERS reports to assemble groups of duplicate cases.
Results
The pipeline was evaluated on 12 human expert adjudicated data sets with a total of 2300 reports and was found to have better overall performance than the current tool used at the FDA for labeling duplicates on 10 of them, with F1 scores ranging from 0.36 to 0.93, with half above 0.75. Because minimizing false discovery increases human expert review efficiency, the improved deduplication pipeline was applied to all historic and daily incoming FAERS reports at FDA and identified about 5 million reports as duplicates.
Conclusions
The InfoViP deduplication pipeline is operating at FDA to identify duplicate case reports in FAERS and provide deduplicated input for improved efficiency and accuracy of safety review operations like adverse event data mining calculations.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.