{"title":"A lattice-based approach for life insurance pricing in a stochastic correlation framework","authors":"Massimo Costabile , Ivar Massabó , Emilio Russo , Alessandro Staino , Rogemar Mamon , Yixing Zhao","doi":"10.1016/j.matcom.2025.03.027","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"235 ","pages":"Pages 145-159"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.