{"title":"Overview of M-LP/MPV17L, a novel atypical PDE and possible target for drug development","authors":"Reiko Iida , Toshihiro Yasuda","doi":"10.1016/j.ejphar.2025.177569","DOIUrl":null,"url":null,"abstract":"<div><div>M-LP/Mpv17L (Mpv17-like protein) was initially identified as a novel protein during screening of age-dependently expressed genes in mouse kidney. Previous findings suggested that human Mpv17-like protein (M-LP/MPV17L) is involved in the maintenance of mitochondrial DNA (mtDNA), thus playing a role in cell defense against mitochondrial dysfunction, although its molecular mechanism of action has remained unknown. Recently, generation of <em>M-LP/MPV17L</em>-knockout (KO) cells using CRISPR-Cas9 technology has revealed that M-LP/MPV17L exerts cyclic nucleotide phosphodiesterase (PDE) activity despite lacking the conserved catalytic region and other structural motifs characteristic of the PDE family, and is one of the key components of pathways such as cAMP/cAMP-dependent protein kinase A (PKA) signaling. Moreover, generation of <em>M-LP/Mpv17L</em>-KO mice has revealed that deficiency of M-LP/Mpv17L results in development of β-cell hyperplasia and improved glucose tolerance, as well as physiological afferent cardiac hypertrophy. M-LP/MPV17L is a protein of great interest as it is a potential target for drug development. Therefore, in this review, we overview the molecular characteristics, regulation of expression, cellular functions, phenotypes detected in KO mice, and disease relevance of M-LP/MPV17L.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"996 ","pages":"Article 177569"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
M-LP/Mpv17L (Mpv17-like protein) was initially identified as a novel protein during screening of age-dependently expressed genes in mouse kidney. Previous findings suggested that human Mpv17-like protein (M-LP/MPV17L) is involved in the maintenance of mitochondrial DNA (mtDNA), thus playing a role in cell defense against mitochondrial dysfunction, although its molecular mechanism of action has remained unknown. Recently, generation of M-LP/MPV17L-knockout (KO) cells using CRISPR-Cas9 technology has revealed that M-LP/MPV17L exerts cyclic nucleotide phosphodiesterase (PDE) activity despite lacking the conserved catalytic region and other structural motifs characteristic of the PDE family, and is one of the key components of pathways such as cAMP/cAMP-dependent protein kinase A (PKA) signaling. Moreover, generation of M-LP/Mpv17L-KO mice has revealed that deficiency of M-LP/Mpv17L results in development of β-cell hyperplasia and improved glucose tolerance, as well as physiological afferent cardiac hypertrophy. M-LP/MPV17L is a protein of great interest as it is a potential target for drug development. Therefore, in this review, we overview the molecular characteristics, regulation of expression, cellular functions, phenotypes detected in KO mice, and disease relevance of M-LP/MPV17L.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.