You Wu , Ke Tang , Chunzheng Wang , Hao Song , Fanfan Zhou , Ying Guo
{"title":"Establishment of interpretable cytotoxicity prediction models using machine learning analysis of transcriptome features","authors":"You Wu , Ke Tang , Chunzheng Wang , Hao Song , Fanfan Zhou , Ying Guo","doi":"10.1016/j.apsb.2025.02.009","DOIUrl":null,"url":null,"abstract":"<div><div>Cytotoxicity, usually represented by cell viability, is a crucial parameter for evaluating drug safety <em>in vitro</em>. Accurate prediction of cell viability/cytotoxicity could accelerate drug development in the early stage. In this study, by integrating cellular transcriptome and cell viability data using four machine learning algorithms (support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM)) and two ensemble algorithms (voting and stacking), highly accurate prediction models of 50% and 80% cell viability were developed with area under the receiver operating characteristic curve (AUROC) of 0.90 and 0.84, respectively; these models also showed good performance when utilized for diverse cell lines. Concerning the characterization of the employed Feature Genes, the models were interpreted, and the mechanisms of bioactive compounds with a narrow therapeutic index (NTI) can also be analyzed. In summary, the models established in this research exhibit superior capacity to those of previous studies; these models enable accurate high-safety substance screening <em>via</em> cytotoxicity prediction across cell lines. Moreover, for the first time, Cytotoxicity Signature (CTS) genes were identified, which could provide additional clues for further study of mechanisms of action (MOA), especially for NTI compounds.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 3","pages":"Pages 1344-1358"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525000528","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytotoxicity, usually represented by cell viability, is a crucial parameter for evaluating drug safety in vitro. Accurate prediction of cell viability/cytotoxicity could accelerate drug development in the early stage. In this study, by integrating cellular transcriptome and cell viability data using four machine learning algorithms (support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM)) and two ensemble algorithms (voting and stacking), highly accurate prediction models of 50% and 80% cell viability were developed with area under the receiver operating characteristic curve (AUROC) of 0.90 and 0.84, respectively; these models also showed good performance when utilized for diverse cell lines. Concerning the characterization of the employed Feature Genes, the models were interpreted, and the mechanisms of bioactive compounds with a narrow therapeutic index (NTI) can also be analyzed. In summary, the models established in this research exhibit superior capacity to those of previous studies; these models enable accurate high-safety substance screening via cytotoxicity prediction across cell lines. Moreover, for the first time, Cytotoxicity Signature (CTS) genes were identified, which could provide additional clues for further study of mechanisms of action (MOA), especially for NTI compounds.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.