{"title":"Quantifying dimethylsulfoniopropionate lyase activity in marine environments using selected ion flow tube mass spectrometry","authors":"Ki-Tae Park , Young Jun Yoon , Kitack Lee","doi":"10.1016/j.marenvres.2025.107125","DOIUrl":null,"url":null,"abstract":"<div><div>The global sulfur cycle is largely influenced by the production of dimethyl sulfide (DMS), which is primarily generated through the enzymatic cleavage of algal dimethylsulfoniopropionate (DMSP). This study presents an efficient and simplified method for analyzing DMSP lyase activity (DLA) by measuring the conversion efficiency of DMSP to DMS using selected ion flow tube mass spectrometry (SIFT-MS) coupled with a dissolved gas extraction device. Unlike conventional methods, which involve multiple steps such as trapping, desorption, and chromatographic separation, the proposed method consists of two streamlined steps: (1) Introduction of excess DMSP substrate into the sample vial, followed by continuous measurement of DMS evolution via SIFT-MS; (2) recording the DMS response at 3-s intervals and calculating the DMS production rate by dividing the integrated DMS mass over time intervals. The high-frequency detection of trace-level DMS enhances the accuracy of release rate measurements and aids in optimizing the DMSP substrate concentration. The performance of the proposed method was evaluated using cultured phytoplankton and natural seawater samples, achieving an analytical precision less than 10 % and a total analysis time of under 10 min, substantially faster than traditional gas chromatography-based techniques. This method provides a robust tool for investigating the dynamics of DMS-related processes in marine environments.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"208 ","pages":"Article 107125"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625001825","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The global sulfur cycle is largely influenced by the production of dimethyl sulfide (DMS), which is primarily generated through the enzymatic cleavage of algal dimethylsulfoniopropionate (DMSP). This study presents an efficient and simplified method for analyzing DMSP lyase activity (DLA) by measuring the conversion efficiency of DMSP to DMS using selected ion flow tube mass spectrometry (SIFT-MS) coupled with a dissolved gas extraction device. Unlike conventional methods, which involve multiple steps such as trapping, desorption, and chromatographic separation, the proposed method consists of two streamlined steps: (1) Introduction of excess DMSP substrate into the sample vial, followed by continuous measurement of DMS evolution via SIFT-MS; (2) recording the DMS response at 3-s intervals and calculating the DMS production rate by dividing the integrated DMS mass over time intervals. The high-frequency detection of trace-level DMS enhances the accuracy of release rate measurements and aids in optimizing the DMSP substrate concentration. The performance of the proposed method was evaluated using cultured phytoplankton and natural seawater samples, achieving an analytical precision less than 10 % and a total analysis time of under 10 min, substantially faster than traditional gas chromatography-based techniques. This method provides a robust tool for investigating the dynamics of DMS-related processes in marine environments.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.