Oluwafemi Adeleke Ojo , Susan Grant , Pearl Ifunanya Nwafor-Ezeh , Tobiloba Christiana Maduakolam-Aniobi , Tolulope Isaiah Akinborode , Emmanuel Henry Ezenabor , Adebola Busola Ojo
{"title":"Ferroptosis as the new approach to cancer therapy","authors":"Oluwafemi Adeleke Ojo , Susan Grant , Pearl Ifunanya Nwafor-Ezeh , Tobiloba Christiana Maduakolam-Aniobi , Tolulope Isaiah Akinborode , Emmanuel Henry Ezenabor , Adebola Busola Ojo","doi":"10.1016/j.ctarc.2025.100913","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer is characterized by unregulated cell proliferation, evasion of apoptosis, and a propensity for metastasis, making it a leading cause of morbidity and mortality globally. Major challenges in cancer treatment include drug resistance and tumor heterogeneity, which hinder the clinical efficacy of existing therapies. To enhance treatment outcomes, it is essential to integrate emerging biological insights and technological advancements with conventional therapeutic strategies. Recent research has identified various forms of cell death, which can be classified as either regulated or unregulated. Regulated cell death involves specific biochemical and signaling pathways, while unregulated cell death occurs passively and uncontrollably. Apoptosis, the most extensively studied form of regulated cell death, is primarily mediated by the activation of caspase proteases. Nevertheless, the resistance of many tumors to apoptotic pathways has shifted focus towards non-apoptotic forms of cell death, such as ferroptosis. Ferroptosis is an iron-dependent form of regulated necrosis characterized by extensive membrane damage resulting from lipid peroxidation. Numerous preclinical studies have demonstrated that inducing ferroptosis can significantly reduce tumor growth across a variety of cancer types. For instance, in a study involving breast cancer models, the use of ferroptosis inducers such as erastin and RSL3 led to a marked decrease in tumor volume and weight.</div><div>This review aims to explore the potential of ferroptosis as a novel therapeutic strategy in cancer treatment.</div></div>","PeriodicalId":9507,"journal":{"name":"Cancer treatment and research communications","volume":"43 ","pages":"Article 100913"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468294225000504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is characterized by unregulated cell proliferation, evasion of apoptosis, and a propensity for metastasis, making it a leading cause of morbidity and mortality globally. Major challenges in cancer treatment include drug resistance and tumor heterogeneity, which hinder the clinical efficacy of existing therapies. To enhance treatment outcomes, it is essential to integrate emerging biological insights and technological advancements with conventional therapeutic strategies. Recent research has identified various forms of cell death, which can be classified as either regulated or unregulated. Regulated cell death involves specific biochemical and signaling pathways, while unregulated cell death occurs passively and uncontrollably. Apoptosis, the most extensively studied form of regulated cell death, is primarily mediated by the activation of caspase proteases. Nevertheless, the resistance of many tumors to apoptotic pathways has shifted focus towards non-apoptotic forms of cell death, such as ferroptosis. Ferroptosis is an iron-dependent form of regulated necrosis characterized by extensive membrane damage resulting from lipid peroxidation. Numerous preclinical studies have demonstrated that inducing ferroptosis can significantly reduce tumor growth across a variety of cancer types. For instance, in a study involving breast cancer models, the use of ferroptosis inducers such as erastin and RSL3 led to a marked decrease in tumor volume and weight.
This review aims to explore the potential of ferroptosis as a novel therapeutic strategy in cancer treatment.
期刊介绍:
Cancer Treatment and Research Communications is an international peer-reviewed publication dedicated to providing comprehensive basic, translational, and clinical oncology research. The journal is devoted to articles on detection, diagnosis, prevention, policy, and treatment of cancer and provides a global forum for the nurturing and development of future generations of oncology scientists. Cancer Treatment and Research Communications publishes comprehensive reviews and original studies describing various aspects of basic through clinical research of all tumor types. The journal also accepts clinical studies in oncology, with an emphasis on prospective early phase clinical trials. Specific areas of interest include basic, translational, and clinical research and mechanistic approaches; cancer biology; molecular carcinogenesis; genetics and genomics; stem cell and developmental biology; immunology; molecular and cellular oncology; systems biology; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; cancer policy; and integration of various approaches. Our mission is to be the premier source of relevant information through promoting excellence in research and facilitating the timely translation of that science to health care and clinical practice.