Huynh Khanh Vi Tran, Nauman bin Ali, Michael Unterkalmsteiner, Jürgen Börstler
{"title":"A proposal and assessment of an improved heuristic for the Eager Test smell detection","authors":"Huynh Khanh Vi Tran, Nauman bin Ali, Michael Unterkalmsteiner, Jürgen Börstler","doi":"10.1016/j.jss.2025.112438","DOIUrl":null,"url":null,"abstract":"<div><h3>Context:</h3><div>The evidence for the prevalence of test smells at the unit testing level has relied on the accuracy of detection tools, which have seen intense research in the last two decades. The Eager Test smell, one of the most prevalent, is often identified using simplified detection rules that practitioners find inadequate.</div></div><div><h3>Objective:</h3><div>We aim to improve the rules for detecting the Eager Test smell.</div></div><div><h3>Methods:</h3><div>We reviewed the literature on test smells to analyze the definitions and detection rules of the Eager Test smell. We proposed a novel, unambiguous definition of the test smell and a heuristic to address the limitations of the existing rules. We evaluated our heuristic against existing detection rules by manually applying it to 300 unit test cases in Java.</div></div><div><h3>Results:</h3><div>Our review identified 56 relevant studies. We found that inadequate interpretations of original definitions of the Eager Test smell led to imprecise detection rules, resulting in a high level of disagreement in detection outcomes. Also, our heuristic detected patterns of eager and non-eager tests that existing rules missed.</div></div><div><h3>Conclusion:</h3><div>Our heuristic captures the essence of the Eager Test smell more precisely; hence, it may address practitioners’ concerns regarding the adequacy of existing detection rules.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"226 ","pages":"Article 112438"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225001062","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Context:
The evidence for the prevalence of test smells at the unit testing level has relied on the accuracy of detection tools, which have seen intense research in the last two decades. The Eager Test smell, one of the most prevalent, is often identified using simplified detection rules that practitioners find inadequate.
Objective:
We aim to improve the rules for detecting the Eager Test smell.
Methods:
We reviewed the literature on test smells to analyze the definitions and detection rules of the Eager Test smell. We proposed a novel, unambiguous definition of the test smell and a heuristic to address the limitations of the existing rules. We evaluated our heuristic against existing detection rules by manually applying it to 300 unit test cases in Java.
Results:
Our review identified 56 relevant studies. We found that inadequate interpretations of original definitions of the Eager Test smell led to imprecise detection rules, resulting in a high level of disagreement in detection outcomes. Also, our heuristic detected patterns of eager and non-eager tests that existing rules missed.
Conclusion:
Our heuristic captures the essence of the Eager Test smell more precisely; hence, it may address practitioners’ concerns regarding the adequacy of existing detection rules.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.