Document-level event extraction from Italian crime news using minimal data

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Giovanni Bonisoli , David Vilares , Federica Rollo , Laura Po
{"title":"Document-level event extraction from Italian crime news using minimal data","authors":"Giovanni Bonisoli ,&nbsp;David Vilares ,&nbsp;Federica Rollo ,&nbsp;Laura Po","doi":"10.1016/j.knosys.2025.113386","DOIUrl":null,"url":null,"abstract":"<div><div>Event extraction from unstructured text is a critical task in natural language processing, often requiring substantial annotated data. This study presents an approach to document-level event extraction applied to Italian crime news, utilizing large language models (LLMs) with minimal labeled data. Our method leverages zero-shot prompting and in-context learning to effectively extract relevant event information. We address three key challenges: (1) identifying text spans corresponding to event entities, (2) associating related spans dispersed throughout the text with the same entity, and (3) formatting the extracted data into a structured JSON. The findings are promising: LLMs achieve an F1-score of approximately 60% for detecting event-related text spans, demonstrating their potential even in resource-constrained settings. This work represents a significant advancement in utilizing LLMs for tasks traditionally dependent on extensive data, showing that meaningful results are achievable with minimal data annotation. Additionally, the proposed approach outperforms several baselines, confirming its robustness and adaptability to various event extraction scenarios.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"317 ","pages":"Article 113386"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125004332","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Event extraction from unstructured text is a critical task in natural language processing, often requiring substantial annotated data. This study presents an approach to document-level event extraction applied to Italian crime news, utilizing large language models (LLMs) with minimal labeled data. Our method leverages zero-shot prompting and in-context learning to effectively extract relevant event information. We address three key challenges: (1) identifying text spans corresponding to event entities, (2) associating related spans dispersed throughout the text with the same entity, and (3) formatting the extracted data into a structured JSON. The findings are promising: LLMs achieve an F1-score of approximately 60% for detecting event-related text spans, demonstrating their potential even in resource-constrained settings. This work represents a significant advancement in utilizing LLMs for tasks traditionally dependent on extensive data, showing that meaningful results are achievable with minimal data annotation. Additionally, the proposed approach outperforms several baselines, confirming its robustness and adaptability to various event extraction scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信