Giovanni Bonisoli , David Vilares , Federica Rollo , Laura Po
{"title":"Document-level event extraction from Italian crime news using minimal data","authors":"Giovanni Bonisoli , David Vilares , Federica Rollo , Laura Po","doi":"10.1016/j.knosys.2025.113386","DOIUrl":null,"url":null,"abstract":"<div><div>Event extraction from unstructured text is a critical task in natural language processing, often requiring substantial annotated data. This study presents an approach to document-level event extraction applied to Italian crime news, utilizing large language models (LLMs) with minimal labeled data. Our method leverages zero-shot prompting and in-context learning to effectively extract relevant event information. We address three key challenges: (1) identifying text spans corresponding to event entities, (2) associating related spans dispersed throughout the text with the same entity, and (3) formatting the extracted data into a structured JSON. The findings are promising: LLMs achieve an F1-score of approximately 60% for detecting event-related text spans, demonstrating their potential even in resource-constrained settings. This work represents a significant advancement in utilizing LLMs for tasks traditionally dependent on extensive data, showing that meaningful results are achievable with minimal data annotation. Additionally, the proposed approach outperforms several baselines, confirming its robustness and adaptability to various event extraction scenarios.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"317 ","pages":"Article 113386"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125004332","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Event extraction from unstructured text is a critical task in natural language processing, often requiring substantial annotated data. This study presents an approach to document-level event extraction applied to Italian crime news, utilizing large language models (LLMs) with minimal labeled data. Our method leverages zero-shot prompting and in-context learning to effectively extract relevant event information. We address three key challenges: (1) identifying text spans corresponding to event entities, (2) associating related spans dispersed throughout the text with the same entity, and (3) formatting the extracted data into a structured JSON. The findings are promising: LLMs achieve an F1-score of approximately 60% for detecting event-related text spans, demonstrating their potential even in resource-constrained settings. This work represents a significant advancement in utilizing LLMs for tasks traditionally dependent on extensive data, showing that meaningful results are achievable with minimal data annotation. Additionally, the proposed approach outperforms several baselines, confirming its robustness and adaptability to various event extraction scenarios.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.