Yichun Sun, Alejandro Guerrero-López, Julián D. Arias-Londoño, Juan I. Godino-Llorente
{"title":"Automatic semantic segmentation of the osseous structures of the paranasal sinuses","authors":"Yichun Sun, Alejandro Guerrero-López, Julián D. Arias-Londoño, Juan I. Godino-Llorente","doi":"10.1016/j.compmedimag.2025.102541","DOIUrl":null,"url":null,"abstract":"<div><div>Endoscopic sinus and skull base surgeries require the use of precise neuronavigation techniques, which may take advantage of accurate delimitation of surrounding structures. This delimitation is critical for robotic-assisted surgery procedures to limit volumes of no resection. In this respect, an accurate segmentation of the osseous structures of the paranasal sinuses is a relevant issue to protect critical anatomic structures during these surgeries. Currently, manual segmentation of these structures is a labour-intensive task and requires wide expertise, often leading to inconsistencies. This is due to the lack of publicly available automatic models specifically tailored for the automatic delineation of the complex osseous structures of the paranasal sinuses. To address this gap, we introduce an open source dataset and a UNet SwinTR model for the segmentation of these complex structures. The initial model was trained on nine complete ex vivo CT scans of the paranasal region and then improved with semi-supervised learning techniques. When tested on an external dataset recorded under different conditions, it achieved a DICE score of 98.25 ± 0.9. These results underscore the effectiveness of the model and its potential for broader research applications. By providing both the dataset and the model publicly available, this work aims to catalyse further research that could improve the precision of clinical interventions of endoscopic sinus and skull-based surgeries.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102541"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000503","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Endoscopic sinus and skull base surgeries require the use of precise neuronavigation techniques, which may take advantage of accurate delimitation of surrounding structures. This delimitation is critical for robotic-assisted surgery procedures to limit volumes of no resection. In this respect, an accurate segmentation of the osseous structures of the paranasal sinuses is a relevant issue to protect critical anatomic structures during these surgeries. Currently, manual segmentation of these structures is a labour-intensive task and requires wide expertise, often leading to inconsistencies. This is due to the lack of publicly available automatic models specifically tailored for the automatic delineation of the complex osseous structures of the paranasal sinuses. To address this gap, we introduce an open source dataset and a UNet SwinTR model for the segmentation of these complex structures. The initial model was trained on nine complete ex vivo CT scans of the paranasal region and then improved with semi-supervised learning techniques. When tested on an external dataset recorded under different conditions, it achieved a DICE score of 98.25 ± 0.9. These results underscore the effectiveness of the model and its potential for broader research applications. By providing both the dataset and the model publicly available, this work aims to catalyse further research that could improve the precision of clinical interventions of endoscopic sinus and skull-based surgeries.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.