Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdullo Hayotov , Samandar Babaev , Abdimumin Kurbonnazarov
{"title":"Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space","authors":"Abdullo Hayotov ,&nbsp;Samandar Babaev ,&nbsp;Abdimumin Kurbonnazarov","doi":"10.1016/j.rinam.2025.100569","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.</div><div>To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.</div><div>This quadrature formula is exact for the hyperbolic functions <span><math><mrow><mo>sinh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>cosh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a constant term. In this work, we consider the case <span><math><mrow><mi>ω</mi><mi>h</mi><mo>∉</mo><mi>Z</mi></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>∈</mo><mi>R</mi></mrow></math></span> in the Hilbert space <span><math><mrow><msubsup><mrow><mtext>K</mtext></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div><div>We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100569"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.
To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.
This quadrature formula is exact for the hyperbolic functions sinh(x),cosh(x) and a constant term. In this work, we consider the case ωhZ and ωR in the Hilbert space K2(3)(0,1).
We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信