3D bead-like Cu2S/NC nanofiber fabric as an interlayer for fabricating dendrite-free lithium metal anodes

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Junzhuo Jiang, Junfan Wei, Yuan Tian, Cheng Wang
{"title":"3D bead-like Cu2S/NC nanofiber fabric as an interlayer for fabricating dendrite-free lithium metal anodes","authors":"Junzhuo Jiang, Junfan Wei, Yuan Tian, Cheng Wang","doi":"10.1039/d5qi00471c","DOIUrl":null,"url":null,"abstract":"Uncontrollable lithium dendrite growth and huge volume changes hinder the practical applications of lithium metal anodes. Herein, a 3D bead-like nitrogen-doped carbon nanofiber fabric modified with Cu<small><sub>2</sub></small>S nanocubes (Cu<small><sub>2</sub></small>S/NCs) was successfully designed as an interlayer between the separator and lithium metal anode. The 3D porous conductive structure could relieve the volume change in the electrode and reduce local current density. Cu<small><sub>2</sub></small>S implanted into the framework as lithophilic sites induced uniform Li nucleation/deposition and inhibited lithium dendrite growth. The Cu<small><sub>2</sub></small>S/NC interlayer could achieve a stable solid–electrolyte interphase (SEI) layer for protecting the lithium metal anode. As a result, a higher coulombic efficiency exceeding 99% after 250 cycles at a current density of 1.0 mA cm<small><sup>−2</sup></small> and a capacity of 1.0 mA h cm<small><sup>−2</sup></small> as well as a prolonged lifespan of over 2500 h for a Li||Li symmetric cell with the Cu<small><sub>2</sub></small>S/NC interlayer could be realized. The full cell coupled with LiFePO<small><sub>4</sub></small> exhibited an outstanding rate capability up to 5.0 C and long-term electrochemical cycling stability for over 1200 cycles.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"34 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00471c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrollable lithium dendrite growth and huge volume changes hinder the practical applications of lithium metal anodes. Herein, a 3D bead-like nitrogen-doped carbon nanofiber fabric modified with Cu2S nanocubes (Cu2S/NCs) was successfully designed as an interlayer between the separator and lithium metal anode. The 3D porous conductive structure could relieve the volume change in the electrode and reduce local current density. Cu2S implanted into the framework as lithophilic sites induced uniform Li nucleation/deposition and inhibited lithium dendrite growth. The Cu2S/NC interlayer could achieve a stable solid–electrolyte interphase (SEI) layer for protecting the lithium metal anode. As a result, a higher coulombic efficiency exceeding 99% after 250 cycles at a current density of 1.0 mA cm−2 and a capacity of 1.0 mA h cm−2 as well as a prolonged lifespan of over 2500 h for a Li||Li symmetric cell with the Cu2S/NC interlayer could be realized. The full cell coupled with LiFePO4 exhibited an outstanding rate capability up to 5.0 C and long-term electrochemical cycling stability for over 1200 cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信