Controlling the spatial distribution of electronic excitation in asymmetric D-A-D’ and symmetric D’-A-D-A-D'

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Evangelos Balanikas, Tommaso Bianconi, Pietro Mancini, Nikhil Tewari, Manju Sheokand, Rajneesh Misra, benedetta. carlotti, Eric Vauthey
{"title":"Controlling the spatial distribution of electronic excitation in asymmetric D-A-D’ and symmetric D’-A-D-A-D'","authors":"Evangelos Balanikas, Tommaso Bianconi, Pietro Mancini, Nikhil Tewari, Manju Sheokand, Rajneesh Misra, benedetta. carlotti, Eric Vauthey","doi":"10.1039/d5sc01257k","DOIUrl":null,"url":null,"abstract":"Understanding how electronic energy is funnelled towards a specific location in a large conjugated molecule is of primary importance for the development of a site-specific photochemistry. To this end, we investigate here how electronic excitation redistributes spatially in a series of electron donor-acceptor (D-A) molecules containing two different donors, D and D', and organised in both linear D-A-D' and symmetric double-branch D'-A-D-A-D' geometries. Using transient IR absorption spectroscopy to probe the alkyne spacers, we show that for both types of systems in non-polar solvents, excitation remains delocalised over the whole molecule. In polar media, charge-transfer (CT) exciton in the linear D-A-D' systems localises rapidly at the end with the strongest donor. For the double-branch systems, excited-state symmetry breaking occurs and the CT exciton localises at the end of one of the two branches, even if the D' terminal donor is not the strongest one. This unexpected behaviour is explained by considering that the energy of a CT state depends not only on the electron donating and withdrawing properties of the donor and acceptor constituents, but also on the solvation energy. This study demonstrates the possibility to control the location of CT excitons in large conjugated systems by varying the nature of the donors and acceptors, the distance between them as well as the environment.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"108 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc01257k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how electronic energy is funnelled towards a specific location in a large conjugated molecule is of primary importance for the development of a site-specific photochemistry. To this end, we investigate here how electronic excitation redistributes spatially in a series of electron donor-acceptor (D-A) molecules containing two different donors, D and D', and organised in both linear D-A-D' and symmetric double-branch D'-A-D-A-D' geometries. Using transient IR absorption spectroscopy to probe the alkyne spacers, we show that for both types of systems in non-polar solvents, excitation remains delocalised over the whole molecule. In polar media, charge-transfer (CT) exciton in the linear D-A-D' systems localises rapidly at the end with the strongest donor. For the double-branch systems, excited-state symmetry breaking occurs and the CT exciton localises at the end of one of the two branches, even if the D' terminal donor is not the strongest one. This unexpected behaviour is explained by considering that the energy of a CT state depends not only on the electron donating and withdrawing properties of the donor and acceptor constituents, but also on the solvation energy. This study demonstrates the possibility to control the location of CT excitons in large conjugated systems by varying the nature of the donors and acceptors, the distance between them as well as the environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信