Rapid synthesis of glycosylated insulins by flow-based peptide synthesis

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuta Maki, Surin K. Mong, Chaitra Chandrashekar, Briony E. Forbes, Mohammed Akhter Hossain, Shintaro Yamaguchi, Colin M. Fadzen, Yasuhiro Kajihara, Bradley L. Pentelute
{"title":"Rapid synthesis of glycosylated insulins by flow-based peptide synthesis","authors":"Yuta Maki, Surin K. Mong, Chaitra Chandrashekar, Briony E. Forbes, Mohammed Akhter Hossain, Shintaro Yamaguchi, Colin M. Fadzen, Yasuhiro Kajihara, Bradley L. Pentelute","doi":"10.1039/d5sc01670c","DOIUrl":null,"url":null,"abstract":"Insulin is a key life-saving drug for patients with diabetes and is used clinically worldwide. To address the physicochemical challenges of insulin, such as low solubility and aggregation, glycosylated insulins have been chemically synthesized, exhibiting improved stability due to the hydration effect of glycans. In this work, we demonstrated the rapid synthesis of glycosylated insulins (glycoinsulins) using flow-based solid-phase peptide synthesis (SPPS). The insulin A-chain and glycosylated B-chain were synthesized by flow-based SPPS, with each elongation cycle completed in just 3 minutes. Through our investigations, the glycosylation step was successfully performed within 10 minutes under optimized flow-based conditions. Additionally, we examined the incorporation of dipeptide units (isoacyl dipeptide and pseudoproline) under flow conditions and demonstrated efficient peptide elongation by combining flow-based SPPS with these dipeptide units. The synthesized A- and B-chains were subsequently used for the stepwise formation of disulfide bond linkages. The resulting glycoinsulins exhibited comparable binding affinities to insulin receptors. These findings highlight a novel flow-based approach for the rapid synthesis of glycosylated peptide and protein drugs.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"58 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc01670c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin is a key life-saving drug for patients with diabetes and is used clinically worldwide. To address the physicochemical challenges of insulin, such as low solubility and aggregation, glycosylated insulins have been chemically synthesized, exhibiting improved stability due to the hydration effect of glycans. In this work, we demonstrated the rapid synthesis of glycosylated insulins (glycoinsulins) using flow-based solid-phase peptide synthesis (SPPS). The insulin A-chain and glycosylated B-chain were synthesized by flow-based SPPS, with each elongation cycle completed in just 3 minutes. Through our investigations, the glycosylation step was successfully performed within 10 minutes under optimized flow-based conditions. Additionally, we examined the incorporation of dipeptide units (isoacyl dipeptide and pseudoproline) under flow conditions and demonstrated efficient peptide elongation by combining flow-based SPPS with these dipeptide units. The synthesized A- and B-chains were subsequently used for the stepwise formation of disulfide bond linkages. The resulting glycoinsulins exhibited comparable binding affinities to insulin receptors. These findings highlight a novel flow-based approach for the rapid synthesis of glycosylated peptide and protein drugs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信