An anomalous fractional diffusion operator

IF 2.5 2区 数学 Q1 MATHEMATICS
Xiangcheng Zheng, V. J. Ervin, Hong Wang
{"title":"An anomalous fractional diffusion operator","authors":"Xiangcheng Zheng, V. J. Ervin, Hong Wang","doi":"10.1007/s13540-025-00394-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, using that the fractional Laplacian can be factored into a product of the divergence operator, a Riesz potential operator and the gradient operator, we introduce an anomalous fractional diffusion operator, involving a matrix <i>K</i>(<i>x</i>), suitable when anomalous diffusion is being studied in a non homogeneous medium. For the case of <i>K</i>(<i>x</i>) a constant, symmetric positive definite matrix we show that the fractional Poisson equation is well posed, and determine the regularity of the solution in terms of the regularity of the right hand side function.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00394-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, using that the fractional Laplacian can be factored into a product of the divergence operator, a Riesz potential operator and the gradient operator, we introduce an anomalous fractional diffusion operator, involving a matrix K(x), suitable when anomalous diffusion is being studied in a non homogeneous medium. For the case of K(x) a constant, symmetric positive definite matrix we show that the fractional Poisson equation is well posed, and determine the regularity of the solution in terms of the regularity of the right hand side function.

反常分数扩散算子
本文利用分数阶拉普拉斯算子可分解为散度算子、Riesz势算子和梯度算子的乘积,引入了一个反常分数阶扩散算子,该算子涉及矩阵K(x),适用于研究非均匀介质中的反常扩散。对于常数对称正定矩阵K(x)的情况,我们证明分数阶泊松方程是适定的,并根据右侧函数的正则性确定解的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信