Optimal distributions for randomized unbiased estimators with an infinite horizon and an adaptive algorithm

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Chao Zheng, Jiangtao Pan, Qun Wang
{"title":"Optimal distributions for randomized unbiased estimators with an infinite horizon and an adaptive algorithm","authors":"Chao Zheng, Jiangtao Pan, Qun Wang","doi":"10.1093/imanum/draf017","DOIUrl":null,"url":null,"abstract":"The randomized unbiased estimators of Rhee & Glynn (2015, Unbiased estimation with square root convergence for SDE models. Oper. Res, 63, 1026–1043) can be highly efficient at approximating expectations of path functionals associated with stochastic differential equations. However, algorithms for calculating the optimal distributions with an infinite horizon are lacking. In this article, based on the method of Cui et al. (2021, On the optimal design of the randomized unbiased Monte Carlo estimators. Oper. Res. Lett., 49, 477–484), we prove that, under mild assumptions, there is a simple representation of the optimal distributions. Then, we develop an adaptive algorithm to compute the optimal distributions with an infinite horizon, which requires only a small amount of computational time in prior estimation. Finally, we provide numerical results to illustrate the efficiency of our adaptive algorithm.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"73 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The randomized unbiased estimators of Rhee & Glynn (2015, Unbiased estimation with square root convergence for SDE models. Oper. Res, 63, 1026–1043) can be highly efficient at approximating expectations of path functionals associated with stochastic differential equations. However, algorithms for calculating the optimal distributions with an infinite horizon are lacking. In this article, based on the method of Cui et al. (2021, On the optimal design of the randomized unbiased Monte Carlo estimators. Oper. Res. Lett., 49, 477–484), we prove that, under mild assumptions, there is a simple representation of the optimal distributions. Then, we develop an adaptive algorithm to compute the optimal distributions with an infinite horizon, which requires only a small amount of computational time in prior estimation. Finally, we provide numerical results to illustrate the efficiency of our adaptive algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信