Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ayse G. Keskus, Asher Bryant, Tanveer Ahmad, Byunggil Yoo, Sergey Aganezov, Anton Goretsky, Ataberk Donmez, Lisa A. Lansdon, Isabel Rodriguez, Jimin Park, Yuelin Liu, Xiwen Cui, Joshua Gardner, Brandy McNulty, Samuel Sacco, Jyoti Shetty, Yongmei Zhao, Bao Tran, Giuseppe Narzisi, Adrienne Helland, Daniel E. Cook, Pi-Chuan Chang, Alexey Kolesnikov, Andrew Carroll, Erin K. Molloy, Chengpeng Bi, Adam Walter, Margaret Gibson, Irina Pushel, Erin Guest, Tomi Pastinen, Kishwar Shafin, Karen H. Miga, Salem Malikic, Chi-Ping Day, Nicolas Robine, Cenk Sahinalp, Michael Dean, Midhat S. Farooqi, Benedict Paten, Mikhail Kolmogorov
{"title":"Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing","authors":"Ayse G. Keskus, Asher Bryant, Tanveer Ahmad, Byunggil Yoo, Sergey Aganezov, Anton Goretsky, Ataberk Donmez, Lisa A. Lansdon, Isabel Rodriguez, Jimin Park, Yuelin Liu, Xiwen Cui, Joshua Gardner, Brandy McNulty, Samuel Sacco, Jyoti Shetty, Yongmei Zhao, Bao Tran, Giuseppe Narzisi, Adrienne Helland, Daniel E. Cook, Pi-Chuan Chang, Alexey Kolesnikov, Andrew Carroll, Erin K. Molloy, Chengpeng Bi, Adam Walter, Margaret Gibson, Irina Pushel, Erin Guest, Tomi Pastinen, Kishwar Shafin, Karen H. Miga, Salem Malikic, Chi-Ping Day, Nicolas Robine, Cenk Sahinalp, Michael Dean, Midhat S. Farooqi, Benedict Paten, Mikhail Kolmogorov","doi":"10.1038/s41587-025-02618-8","DOIUrl":null,"url":null,"abstract":"<p>For the detection of somatic structural variation (SV) in cancer genomes, long-read sequencing is advantageous over short-read sequencing with respect to mappability and variant phasing. However, most current long-read SV detection methods are not developed for the analysis of tumor genomes characterized by complex rearrangements and heterogeneity. Here, we present Severus, a breakpoint graph-based algorithm for somatic SV calling from long-read cancer sequencing. Severus works with matching normal samples, supports unbalanced cancer karyotypes, can characterize complex multibreak SV patterns and produces haplotype-specific calls. On a comprehensive multitechnology cell line panel, Severus consistently outperforms other long-read and short-read methods in terms of SV detection F1 score (harmonic mean of the precision and recall). We also illustrate that compared to long-read methods, short-read sequencing systematically misses certain classes of somatic SVs, such as insertions or clustered rearrangements. We apply Severus to several clinical cases of pediatric leukemia/lymphoma, revealing clinically relevant cryptic rearrangements missed by standard genomic panels.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"183 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02618-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For the detection of somatic structural variation (SV) in cancer genomes, long-read sequencing is advantageous over short-read sequencing with respect to mappability and variant phasing. However, most current long-read SV detection methods are not developed for the analysis of tumor genomes characterized by complex rearrangements and heterogeneity. Here, we present Severus, a breakpoint graph-based algorithm for somatic SV calling from long-read cancer sequencing. Severus works with matching normal samples, supports unbalanced cancer karyotypes, can characterize complex multibreak SV patterns and produces haplotype-specific calls. On a comprehensive multitechnology cell line panel, Severus consistently outperforms other long-read and short-read methods in terms of SV detection F1 score (harmonic mean of the precision and recall). We also illustrate that compared to long-read methods, short-read sequencing systematically misses certain classes of somatic SVs, such as insertions or clustered rearrangements. We apply Severus to several clinical cases of pediatric leukemia/lymphoma, revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

Abstract Image

Severus利用长读测序技术检测癌症基因组中的体细胞结构变异和复杂重排
对于癌症基因组中体细胞结构变异(SV)的检测,长读测序在可映射性和变异相位方面优于短读测序。然而,目前大多数长读SV检测方法并没有发展到用于分析具有复杂重排和异质性特征的肿瘤基因组。在这里,我们提出了Severus,一个基于断点图的算法,用于长读癌症测序的体细胞SV调用。Severus与匹配的正常样本一起工作,支持不平衡的癌症核型,可以表征复杂的多重断裂SV模式,并产生单倍型特异性呼叫。在综合多技术细胞系面板上,Severus在SV检测F1分数(精度和召回率的调和平均值)方面始终优于其他长读和短读方法。我们还说明,与长读法相比,短读测序系统地遗漏了某些类型的体细胞sv,如插入或聚类重排。我们将Severus应用于几个儿科白血病/淋巴瘤的临床病例,揭示了标准基因组面板遗漏的临床相关的隐性重排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信