Electronic structure of Bi2Ir2O7 probed by resonant inelastic x-ray scattering at the oxygen K edge: Metallicity, hybridization, and electronic correlations
P. Olalde-Velasco, Y. Huang, J. Pelliciari, J. Miyawaki, A. Uldry, D. Prabhakaran, B. Delley, Y. Harada, A. T. Boothroyd, H. M. Rønnow, D. F. McMorrow, T. Schmitt
{"title":"Electronic structure of Bi2Ir2O7 probed by resonant inelastic x-ray scattering at the oxygen K edge: Metallicity, hybridization, and electronic correlations","authors":"P. Olalde-Velasco, Y. Huang, J. Pelliciari, J. Miyawaki, A. Uldry, D. Prabhakaran, B. Delley, Y. Harada, A. T. Boothroyd, H. M. Rønnow, D. F. McMorrow, T. Schmitt","doi":"10.1103/physrevb.111.155106","DOIUrl":null,"url":null,"abstract":"The electronic structure of metallic Bi</a:mi>2</a:mn></a:msub>Ir</a:mi>2</a:mn></a:msub>O</a:mi>7</a:mn></a:msub></a:mrow></a:math> has been investigated by a combination of soft x-ray absorption spectroscopy, x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) in the vicinity of the oxygen <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>K</e:mi></e:mrow></e:math> edge. The O <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>K</f:mi></f:mrow></f:math>-edge RIXS spectra are found to resemble the O <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:mi>K</g:mi></g:mrow></g:math>-edge XES spectra with resonating features but with an absence of any Raman modes, revealing the highly itinerant nature of this compound. The O <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mi>K</h:mi></h:mrow></h:math>-edge response is compared with scalar relativistic band structure calculations within the local density approximation, which captures the main spectral characteristics. The RIXS spectra either display a localized or delocalized Ir <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:mrow><i:mn>5</i:mn><i:mi>d</i:mi></i:mrow></i:math> response, depending on whether the photon energy is tuned to the pre-edge or above. Our results uncover a significant coupling of O <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:mi>K</j:mi></j:mrow></j:math>-edge RIXS via the O <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:mn>2</k:mn><k:mi>p</k:mi><k:mo>−</k:mo><k:mi>Ir</k:mi></k:mrow><k:mo> </k:mo><k:mrow><k:mn>5</k:mn><k:mi>d</k:mi></k:mrow></k:math> hybridization to the partial density of states of the Ir <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mrow><l:mn>5</l:mn><l:mi>d</l:mi></l:mrow></l:math> states. An alternative explanation of the Ir <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>5</m:mn><m:mi>d</m:mi><m:mo>−</m:mo><m:mi mathvariant=\"normal\">O</m:mi></m:mrow><m:mo> </m:mo><m:mrow><m:mn>2</m:mn><m:mi>p</m:mi></m:mrow></m:math> hybridization spectral structure in the optical region of the RIXS spectra is given in terms of Ir <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:mrow><o:mi>d</o:mi><o:mi>d</o:mi></o:mrow></o:math> excitations. Our findings allow us to infer that the relative electronic correlations in the metallic <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\"><p:mrow><p:msub><p:mi mathvariant=\"normal\">Bi</p:mi><p:mn>2</p:mn></p:msub><p:msub><p:mi mathvariant=\"normal\">Ir</p:mi><p:mn>2</p:mn></p:msub><p:msub><p:mi mathvariant=\"normal\">O</p:mi><p:mn>7</p:mn></p:msub></p:mrow></p:math> compound with sizable spin-orbit coupling are <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\"><t:mrow><t:mn>0.06</t:mn><t:mo>≤</t:mo><t:mi>U</t:mi></t:mrow><t:mo>/</t:mo><t:mrow><t:mi>W</t:mi><t:mo>≤</t:mo><t:mn>0.22</t:mn></t:mrow></t:math> and thus are in the moderate-to-weak regime. We found that the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\"><u:msub><u:mi>J</u:mi><u:mi>eff</u:mi></u:msub></u:math> model, developed to understand the existence of insulating states in various iridate perovskites, is not applicable to <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\"><v:mrow><v:msub><v:mi mathvariant=\"normal\">Bi</v:mi><v:mn>2</v:mn></v:msub><v:msub><v:mi mathvariant=\"normal\">Ir</v:mi><v:mn>2</v:mn></v:msub><v:msub><v:mi mathvariant=\"normal\">O</v:mi><v:mn>7</v:mn></v:msub></v:mrow></v:math>, casting doubts on its applicability to pyrochlore iridates with moderate to weak electronic correlations. We argue that the strong O <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\"><z:mrow><z:mn>2</z:mn><z:mi>p</z:mi><z:mo>−</z:mo><z:mi>Ir</z:mi></z:mrow><z:mo> </z:mo><z:mrow><z:mn>5</z:mn><z:mi>d</z:mi><z:mo>−</z:mo><z:mi>Bi</z:mi></z:mrow><z:mo> </z:mo><z:mrow><z:mn>6</z:mn><z:mi>s</z:mi></z:mrow><z:mo>/</z:mo><z:mrow><z:mn>6</z:mn><z:mi>p</z:mi></z:mrow></z:math> hybridization is responsible for the highly itinerant nature of this material. Our results establish the capability of O K</ab:mi></ab:mrow></ab:math>-edge RIXS to identify the electronic ground state of <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\"><bb:mrow><bb:mn>5</bb:mn><bb:mi>d</bb:mi></bb:mrow></bb:math> spin-orbit transition metal compounds and to qualitatively assess their degree of localization. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"59 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.155106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The electronic structure of metallic Bi2Ir2O7 has been investigated by a combination of soft x-ray absorption spectroscopy, x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) in the vicinity of the oxygen K edge. The O K-edge RIXS spectra are found to resemble the O K-edge XES spectra with resonating features but with an absence of any Raman modes, revealing the highly itinerant nature of this compound. The O K-edge response is compared with scalar relativistic band structure calculations within the local density approximation, which captures the main spectral characteristics. The RIXS spectra either display a localized or delocalized Ir 5d response, depending on whether the photon energy is tuned to the pre-edge or above. Our results uncover a significant coupling of O K-edge RIXS via the O 2p−Ir5d hybridization to the partial density of states of the Ir 5d states. An alternative explanation of the Ir 5d−O2p hybridization spectral structure in the optical region of the RIXS spectra is given in terms of Ir dd excitations. Our findings allow us to infer that the relative electronic correlations in the metallic Bi2Ir2O7 compound with sizable spin-orbit coupling are 0.06≤U/W≤0.22 and thus are in the moderate-to-weak regime. We found that the Jeff model, developed to understand the existence of insulating states in various iridate perovskites, is not applicable to Bi2Ir2O7, casting doubts on its applicability to pyrochlore iridates with moderate to weak electronic correlations. We argue that the strong O 2p−Ir5d−Bi6s/6p hybridization is responsible for the highly itinerant nature of this material. Our results establish the capability of O K-edge RIXS to identify the electronic ground state of 5d spin-orbit transition metal compounds and to qualitatively assess their degree of localization. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter