Quantification of Intratumoral Heterogeneity Based on Habitat Analysis for Preoperative Assessment of Lymphovascular Invasion in Colorectal Cancer.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yexin Su, Hongyue Zhao, Zhehao Lyu, Peng Xu, Ziyue Zhang, Huiting Zhang, Mengjiao Wang, Lin Tian, Peng Fu
{"title":"Quantification of Intratumoral Heterogeneity Based on Habitat Analysis for Preoperative Assessment of Lymphovascular Invasion in Colorectal Cancer.","authors":"Yexin Su, Hongyue Zhao, Zhehao Lyu, Peng Xu, Ziyue Zhang, Huiting Zhang, Mengjiao Wang, Lin Tian, Peng Fu","doi":"10.1016/j.acra.2025.03.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Preoperative knowledge of the status of lymphovascular invasion (LVI) status in colorectal cancer (CRC) patients can provide valuable information for choosing appropriate treatment strategies. This study aimed to explore the value of heterogeneity features derived from the habitat analysis of <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images in predicting LVI.</p><p><strong>Materials and methods: </strong>Pretreatment <sup>18</sup>F-FDG PET/computed tomography (CT) images from 177 patients diagnosed with CRC were retrospectively obtained (training cohort, n=106; validation cohort, n=71). Conventional radiomics features and habitat-derived tumor heterogeneity features were extracted from <sup>18</sup>F-FDG PET scans. The output probabilities of the imaging-based random forest model were used to generate a radiomics score (Radscore) and intratumoral heterogeneity score (ITHscore). Multivariate logistic regression analysis was used to determine the independent risk factors for LVI. On this basis, four LVI status classification models were developed using (a) clinical variables (Clinical model), (b) tumor heterogeneity features (ITHscore model), (c) radiomics features (Radscore model), and (d) clinical variables, tumor heterogeneity features, and radiomics features (Combined model). The area under the curve (AUC) and decision curve analysis were used to evaluate model performance.</p><p><strong>Results: </strong>Among all of the variables, the PET/CT-reported lymph node status, ITHscore, and Radscore were retained as predictors related to the risk of LVI in CRC patients (P<0.05). The predictive effect of the ITHscore model (AUC: 0.712) was better than that of the Radscore model (AUC: 0.650) and Clinical model (AUC: 0.652) in the validation cohort. The Combined model achieved better classification effects and clinical usefulness, and the AUCs of the training and validation cohorts were 0.857 and 0.798, respectively. A nomogram of the Combined model was established, and the calibration plot was well fitted (P>0.05). In addition, the results of Spearman's rank correlation tests showed that there was no significant correlation between the ITHscore and Radscore (R=0.044, P=0.655 in the training cohort; R=0.067, P=0.580 in the validation cohort).</p><p><strong>Conclusion: </strong>Our results showed that the ITHscore is a novel and stable quantitative indicator of LVI and is helpful for effectively facilitating the risk stratification of LVI in CRC patients after integrating clinical variables and radiomics features.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: Preoperative knowledge of the status of lymphovascular invasion (LVI) status in colorectal cancer (CRC) patients can provide valuable information for choosing appropriate treatment strategies. This study aimed to explore the value of heterogeneity features derived from the habitat analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images in predicting LVI.

Materials and methods: Pretreatment 18F-FDG PET/computed tomography (CT) images from 177 patients diagnosed with CRC were retrospectively obtained (training cohort, n=106; validation cohort, n=71). Conventional radiomics features and habitat-derived tumor heterogeneity features were extracted from 18F-FDG PET scans. The output probabilities of the imaging-based random forest model were used to generate a radiomics score (Radscore) and intratumoral heterogeneity score (ITHscore). Multivariate logistic regression analysis was used to determine the independent risk factors for LVI. On this basis, four LVI status classification models were developed using (a) clinical variables (Clinical model), (b) tumor heterogeneity features (ITHscore model), (c) radiomics features (Radscore model), and (d) clinical variables, tumor heterogeneity features, and radiomics features (Combined model). The area under the curve (AUC) and decision curve analysis were used to evaluate model performance.

Results: Among all of the variables, the PET/CT-reported lymph node status, ITHscore, and Radscore were retained as predictors related to the risk of LVI in CRC patients (P<0.05). The predictive effect of the ITHscore model (AUC: 0.712) was better than that of the Radscore model (AUC: 0.650) and Clinical model (AUC: 0.652) in the validation cohort. The Combined model achieved better classification effects and clinical usefulness, and the AUCs of the training and validation cohorts were 0.857 and 0.798, respectively. A nomogram of the Combined model was established, and the calibration plot was well fitted (P>0.05). In addition, the results of Spearman's rank correlation tests showed that there was no significant correlation between the ITHscore and Radscore (R=0.044, P=0.655 in the training cohort; R=0.067, P=0.580 in the validation cohort).

Conclusion: Our results showed that the ITHscore is a novel and stable quantitative indicator of LVI and is helpful for effectively facilitating the risk stratification of LVI in CRC patients after integrating clinical variables and radiomics features.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信