Konstantinos Vrettos, Evangelia E Vassalou, Grigoria Vamvakerou, Apostolos H Karantanas, Michail E Klontzas
{"title":"Generating Synthetic T2*-Weighted Gradient Echo Images of the Knee with an Open-source Deep Learning Model.","authors":"Konstantinos Vrettos, Evangelia E Vassalou, Grigoria Vamvakerou, Apostolos H Karantanas, Michail E Klontzas","doi":"10.1016/j.acra.2025.03.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Routine knee MRI protocols for 1.5 T and 3 T scanners, do not include T2*-w gradient echo (T2*W) images, which are useful in several clinical scenarios such as the assessment of cartilage, synovial blooming (deposition of hemosiderin), chondrocalcinosis and the evaluation of the physis in pediatric patients. Herein, we aimed to develop an open-source deep learning model that creates synthetic T2*W images of the knee using fat-suppressed intermediate-weighted images.</p><p><strong>Materials and methods: </strong>A cycleGAN model was trained with 12,118 sagittal knee MR images and tested on an independent set of 2996 images. Diagnostic interchangeability of synthetic T2*W images was assessed against a series of findings. Voxel intensity of four tissues was evaluated with Bland-Altman plots. Image quality was assessed with the use of root mean squared error (NRMSE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). Code, model and a standalone executable file are provided on github.</p><p><strong>Results: </strong>The model achieved a median NRMSE, PSNR and SSIM of 0.5, 17.4, and 0.5, respectively. Images were found interchangeable with an intraclass correlation coefficient >0.95 for all findings. Mean voxel intensity was equal between synthetic and conventional images. Four types of artifacts were identified: geometrical distortion (86/163 cases), object insertion/omission (11/163 cases), a wrap-around-like (26/163 cases) and an incomplete fat-suppression artifact (120/163 cases), which had a median 0 impact (no impact) on the diagnosis.</p><p><strong>Conclusion: </strong>In conclusion, the developed open-source GAN model creates synthetic T2*W images of the knee of high diagnostic value and quality. The identified artifacts had no or minor effect on the diagnostic value of the images.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: Routine knee MRI protocols for 1.5 T and 3 T scanners, do not include T2*-w gradient echo (T2*W) images, which are useful in several clinical scenarios such as the assessment of cartilage, synovial blooming (deposition of hemosiderin), chondrocalcinosis and the evaluation of the physis in pediatric patients. Herein, we aimed to develop an open-source deep learning model that creates synthetic T2*W images of the knee using fat-suppressed intermediate-weighted images.
Materials and methods: A cycleGAN model was trained with 12,118 sagittal knee MR images and tested on an independent set of 2996 images. Diagnostic interchangeability of synthetic T2*W images was assessed against a series of findings. Voxel intensity of four tissues was evaluated with Bland-Altman plots. Image quality was assessed with the use of root mean squared error (NRMSE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). Code, model and a standalone executable file are provided on github.
Results: The model achieved a median NRMSE, PSNR and SSIM of 0.5, 17.4, and 0.5, respectively. Images were found interchangeable with an intraclass correlation coefficient >0.95 for all findings. Mean voxel intensity was equal between synthetic and conventional images. Four types of artifacts were identified: geometrical distortion (86/163 cases), object insertion/omission (11/163 cases), a wrap-around-like (26/163 cases) and an incomplete fat-suppression artifact (120/163 cases), which had a median 0 impact (no impact) on the diagnosis.
Conclusion: In conclusion, the developed open-source GAN model creates synthetic T2*W images of the knee of high diagnostic value and quality. The identified artifacts had no or minor effect on the diagnostic value of the images.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.