{"title":"Transitions and tricks: nonlinear phenomena in the avian voice.","authors":"Ana Amador, Gabriel B Mindlin, Coen P H Elemans","doi":"10.1098/rstb.2024.0007","DOIUrl":null,"url":null,"abstract":"<p><p>Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240007"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.