Exploring nonlinear phenomena in animal vocalizations through oscillator theory.

IF 5.4 2区 生物学 Q1 BIOLOGY
Marta Del Olmo, Christoph Schmal, Hanspeter Herzel
{"title":"Exploring nonlinear phenomena in animal vocalizations through oscillator theory.","authors":"Marta Del Olmo, Christoph Schmal, Hanspeter Herzel","doi":"10.1098/rstb.2024.0015","DOIUrl":null,"url":null,"abstract":"<p><p>Animal vocalizations comprise a rich array of complex sounds that exhibit nonlinear phenomena (NLP), which have fascinated researchers for decades. From the melodic songs of birds to the clicks and whistles of dolphins, many species have been found to produce nonlinear vocalizations, offering a valuable perspective on the mechanisms underlying sound production and potential adaptive functions. By leveraging on the principles of oscillator theory and nonlinear dynamics, animal vocalizations, which are based on coupled oscillators, can be described and conveniently classified. We review the basic ingredients for self-sustained oscillations and how different NLP can emerge. We discuss important terms in the context of oscillator theory: attractor types, phase space, bifurcations and Arnold tongue diagrams. Through a comparative analysis of observed NLP and bifurcation diagrams, our study reviews how the tools of nonlinear dynamics can provide insights into the intricate complexity of animal vocalizations, as well as into the evolutionary pressures and adaptive strategies that have shaped the diverse communication systems of the animal kingdom.This article is part of the theme issue, 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240015"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Animal vocalizations comprise a rich array of complex sounds that exhibit nonlinear phenomena (NLP), which have fascinated researchers for decades. From the melodic songs of birds to the clicks and whistles of dolphins, many species have been found to produce nonlinear vocalizations, offering a valuable perspective on the mechanisms underlying sound production and potential adaptive functions. By leveraging on the principles of oscillator theory and nonlinear dynamics, animal vocalizations, which are based on coupled oscillators, can be described and conveniently classified. We review the basic ingredients for self-sustained oscillations and how different NLP can emerge. We discuss important terms in the context of oscillator theory: attractor types, phase space, bifurcations and Arnold tongue diagrams. Through a comparative analysis of observed NLP and bifurcation diagrams, our study reviews how the tools of nonlinear dynamics can provide insights into the intricate complexity of animal vocalizations, as well as into the evolutionary pressures and adaptive strategies that have shaped the diverse communication systems of the animal kingdom.This article is part of the theme issue, 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.

用振荡器理论探讨动物发声中的非线性现象。
动物发声包含了一系列丰富的复杂声音,这些声音表现出非线性现象(NLP),几十年来一直吸引着研究人员。从鸟类的旋律歌曲到海豚的咔哒声和哨声,许多物种都能产生非线性发声,这为声音产生的机制和潜在的适应功能提供了有价值的视角。利用振子理论和非线性动力学原理,可以对基于耦合振子的动物发声进行描述和分类。我们回顾了自我持续振荡的基本成分以及不同的NLP如何出现。我们讨论了振子理论中的重要术语:吸引子类型、相空间、分岔和阿诺德舌图。通过对观察到的NLP和分岔图的比较分析,我们的研究回顾了非线性动力学工具如何为动物发声的复杂复杂性提供见解,以及进化压力和适应策略,这些压力和适应策略塑造了动物王国的各种交流系统。本文是主题问题“脊椎动物发声的非线性现象:机制和交流功能”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信