Rapid and High-Yielding Purification of DNA Self-Assembled Structures by Aqueous Two-Phase System.

Q4 Biochemistry, Genetics and Molecular Biology
Marcos K Masukawa, Masahiro Takinoue
{"title":"Rapid and High-Yielding Purification of DNA Self-Assembled Structures by Aqueous Two-Phase System.","authors":"Marcos K Masukawa, Masahiro Takinoue","doi":"10.1007/978-1-0716-4394-5_2","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous two-phase systems (ATPS) of dextran and polyethylene glycol (PEG) enable the purification of DNA structures such as DNA origami and DNA nanotubes in times as short as 10 min. This method, which has recovery yields >90% for a typical DNA origami, owes its efficiency to the highly selective partition of the DNA structures in the dextran phase of these emulsions. This purification method is carried out in conditions that promote the structural stability of these structures, making it particularly suitable for DNA nanotechnology. In this protocol, we will describe the materials and methods for purifying DNA origami and quantifying the purification yield by agarose electrophoresis and image analysis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2901 ","pages":"13-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4394-5_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous two-phase systems (ATPS) of dextran and polyethylene glycol (PEG) enable the purification of DNA structures such as DNA origami and DNA nanotubes in times as short as 10 min. This method, which has recovery yields >90% for a typical DNA origami, owes its efficiency to the highly selective partition of the DNA structures in the dextran phase of these emulsions. This purification method is carried out in conditions that promote the structural stability of these structures, making it particularly suitable for DNA nanotechnology. In this protocol, we will describe the materials and methods for purifying DNA origami and quantifying the purification yield by agarose electrophoresis and image analysis.

利用水性两相系统快速高产地纯化 DNA 自组装结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信