Exploring the microbial communities in coastal cenote and their hidden biotechnological potential.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Perla A Contreras-de la Rosa, Susana De la Torre-Zavala, Aileen O Connor-Sánchez, Alejandra Prieto-Davó, Elsa B Góngora-Castillo
{"title":"Exploring the microbial communities in coastal cenote and their hidden biotechnological potential.","authors":"Perla A Contreras-de la Rosa, Susana De la Torre-Zavala, Aileen O Connor-Sánchez, Alejandra Prieto-Davó, Elsa B Góngora-Castillo","doi":"10.1099/mgen.0.001382","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"11 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001382","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信