Decoding the effect of temperatures on conformational stability and order of ligand unbound thermosensing adenine riboswitch using molecular dynamics simulation.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Soumi Das
{"title":"Decoding the effect of temperatures on conformational stability and order of ligand unbound thermosensing adenine riboswitch using molecular dynamics simulation.","authors":"Soumi Das","doi":"10.1080/07391102.2025.2484662","DOIUrl":null,"url":null,"abstract":"<p><p>The structure-function relationship of the riboswitch is governed mainly by two factors, ligand binding and temperature. Most of the experimental studies shed light on structural dynamics and gene regulation function of Adenine riboswitch from the aspect of ligand instead of temperature. Two unliganded Adenine riboswitch conformations (apoA and apoB) from the thermophile <i>Vibrio vulnificus</i> draw particular attention due to their diverse and polymorphic structures. Ligand-free apoB Adenine riboswitch conformation is not able to interact with the ligand whereas ligand-free apoA Adenine riboswitch conformation adopts ligand-receptive form. The interconversion between apoA and apoB conformation is temperature-dependent and thermodynamically controlled. Therefore Adenine riboswitch is called temperature sensing RNA. The molecular mechanism underlying the thermosensitivity of ligand free Adenine riboswitch is not well known. Hence an attempt is made to examine conformational stability and order of apoA with respect to apoB Adenine riboswitch aptamer computing RMSD, RMSF, R<sub>G</sub>, principal component analysis, hydrogen bonding interaction and conformational thermodynamics derived from all-atom molecular dynamics trajectories in the temperature range 283K-400K. The temperatures corresponding to the conformational stability and order of apoA adenine riboswitch with respect to apoB adenine riboswitch whole aptamer are shown in descending order 293K∼303K> 313K∼283K>373K>323K. Residue wise and domain wise changes in conformational free energy and entropy of conformational degrees of freedom like pseudo-torsion angle ƞ and θ reflect apoA exhibits pronounced conformational stability compared to apoB at temperatures 293K and 303K, whereas both forms reveal decreased stability at 323K and 400K and may be inactivated, highlighting their role as temperature sensors.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2484662","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The structure-function relationship of the riboswitch is governed mainly by two factors, ligand binding and temperature. Most of the experimental studies shed light on structural dynamics and gene regulation function of Adenine riboswitch from the aspect of ligand instead of temperature. Two unliganded Adenine riboswitch conformations (apoA and apoB) from the thermophile Vibrio vulnificus draw particular attention due to their diverse and polymorphic structures. Ligand-free apoB Adenine riboswitch conformation is not able to interact with the ligand whereas ligand-free apoA Adenine riboswitch conformation adopts ligand-receptive form. The interconversion between apoA and apoB conformation is temperature-dependent and thermodynamically controlled. Therefore Adenine riboswitch is called temperature sensing RNA. The molecular mechanism underlying the thermosensitivity of ligand free Adenine riboswitch is not well known. Hence an attempt is made to examine conformational stability and order of apoA with respect to apoB Adenine riboswitch aptamer computing RMSD, RMSF, RG, principal component analysis, hydrogen bonding interaction and conformational thermodynamics derived from all-atom molecular dynamics trajectories in the temperature range 283K-400K. The temperatures corresponding to the conformational stability and order of apoA adenine riboswitch with respect to apoB adenine riboswitch whole aptamer are shown in descending order 293K∼303K> 313K∼283K>373K>323K. Residue wise and domain wise changes in conformational free energy and entropy of conformational degrees of freedom like pseudo-torsion angle ƞ and θ reflect apoA exhibits pronounced conformational stability compared to apoB at temperatures 293K and 303K, whereas both forms reveal decreased stability at 323K and 400K and may be inactivated, highlighting their role as temperature sensors.

利用分子动力学模拟方法解码温度对配体非结合热敏腺嘌呤核糖开关构象稳定性和顺序的影响。
核开关的结构-功能关系主要受配体结合和温度两个因素的影响。大多数实验研究都是从配体的角度而不是从温度的角度来研究腺嘌呤核糖开关的结构动力学和基因调控功能。来自嗜热创伤弧菌的两种无配体腺嘌呤核开关构象(apoA和apoB)由于其多样性和多态结构而引起了人们的特别关注。无配体载脂蛋白b的腺嘌呤核糖开关构象不能与配体相互作用,而无配体载脂蛋白a的腺嘌呤核糖开关构象采用配体接受形式。载脂蛋白a和载脂蛋白b构象之间的相互转化依赖于温度和热力学控制。因此腺嘌呤核糖开关被称为温度感应RNA。无配体腺嘌呤核开关热敏性的分子机制尚不清楚。因此,在283K-400K的全原子分子动力学轨迹中,我们试图通过计算载子ob腺嘌呤核糖开关适体的RMSD、RMSF、RG、主成分分析、氢键相互作用和构象热力学来检验apoA的构象稳定性和顺序。apoA腺嘌呤核糖开关相对于apoB腺嘌呤核糖开关整个适体的构象稳定性和顺序对应的温度依次为293K ~ 303K> 313K ~ 283K>373K>323K。残基方向和结构域方向上的构象自由能和构象自由度熵的变化,如伪扭转角(z)和θ (z),反映了在293K和303K温度下,apoA与apoB相比具有明显的构象稳定性,而在323K和400K温度下,这两种形式的构象稳定性都有所下降,可能是失活的,这突出了它们作为温度传感器的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信