ER-mitochondria encounter structure connections determine drug sensitivity and virulence of Cryptococcus neoformans.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2025-05-01 Epub Date: 2025-04-03 DOI:10.1242/jcs.263558
Deepika Kumari, Mohit Kumar, Naseem A Gaur, Lucky Duhan, Nadezhda Sachivkina, Raman Manoharlal, Ritu Pasrija
{"title":"ER-mitochondria encounter structure connections determine drug sensitivity and virulence of Cryptococcus neoformans.","authors":"Deepika Kumari, Mohit Kumar, Naseem A Gaur, Lucky Duhan, Nadezhda Sachivkina, Raman Manoharlal, Ritu Pasrija","doi":"10.1242/jcs.263558","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptococcus neoformans is a common fungal pathogen, causing fatal meningoencephalitis in immunocompromised individuals. The limited availability of antifungals and increasing resistance in pathogens including C. neoformans emphasize the need to find new drugs. Mitochondria have long been associated with drug resistance in fungi. They are connected to the endoplasmic reticulum (ER) via a multiprotein complex, the ER-mitochondria encounter structure (ERMES), which is unique in the fungal kingdom. In this study on C. neoformans, the four subunits of the ERMES complex, namely, Mmm1, Mdm12, Mdm10 and Mdm34, were deleted to generate the strains Δmmm1, Δmdm12, Δmdm10 and Δmdm34, respectively. These mutants had impaired mitochondria and were sensitive to antifungals, including echinocandins, due to lower chitin content. Virulence factors, including capsule formation and melanin production, were debilitated in the mutants. The partner organelle ER was also affected by compromised ERMES contact, as the activity of several ER-synthesized enzymes involved in virulence was impacted. The in vivo studies in Caenorhabditis elegans model of cryptococcosis confirmed the reduced virulence of the mutants. These results indicate that the impairment of the ERMES complex is crucial for the virulence and pathogenesis of C. neoformans.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263558","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptococcus neoformans is a common fungal pathogen, causing fatal meningoencephalitis in immunocompromised individuals. The limited availability of antifungals and increasing resistance in pathogens including C. neoformans emphasize the need to find new drugs. Mitochondria have long been associated with drug resistance in fungi. They are connected to the endoplasmic reticulum (ER) via a multiprotein complex, the ER-mitochondria encounter structure (ERMES), which is unique in the fungal kingdom. In this study on C. neoformans, the four subunits of the ERMES complex, namely, Mmm1, Mdm12, Mdm10 and Mdm34, were deleted to generate the strains Δmmm1, Δmdm12, Δmdm10 and Δmdm34, respectively. These mutants had impaired mitochondria and were sensitive to antifungals, including echinocandins, due to lower chitin content. Virulence factors, including capsule formation and melanin production, were debilitated in the mutants. The partner organelle ER was also affected by compromised ERMES contact, as the activity of several ER-synthesized enzymes involved in virulence was impacted. The in vivo studies in Caenorhabditis elegans model of cryptococcosis confirmed the reduced virulence of the mutants. These results indicate that the impairment of the ERMES complex is crucial for the virulence and pathogenesis of C. neoformans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信