Enhancing wheat β-glucan content through precision crossbreeding: development and evaluation of biofortified lines with improved nutritional and agronomic traits.
{"title":"Enhancing wheat β-glucan content through precision crossbreeding: development and evaluation of biofortified lines with improved nutritional and agronomic traits.","authors":"Upendra Kumar, Sourav Panigrahi, Rita Goswami, Yogita Singh, Priyanka Balyan, Prexha Kapoor, Sundip Kumar, Krishna Pal Singh, Farkhandah Jan, Reyazul Rouf Mir","doi":"10.3389/fgene.2025.1532956","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> To address the urgent demand for biofortified wheat enriched with health-beneficial dietary fibres such as β-glucan, this study employed meticulous crossbreeding between established wheat cultivars and the β-glucan-rich wild relative <i>Aegilops kotschyi</i> accession \"AK-3790\". <b>Methods:</b> Within this context, a derivative line encompassing a pair of 7U chromosomes from <i>Ae. Kotschyi</i>, denoted as 63-2-13, was identified. The presence of the 7U chromosome in this line was confirmed through comprehensive molecular marker and genomic <i>in situ</i> hybridization (GISH) analyses. With the aim of increasing the β-glucan content in hexaploid wheat, two distinct backcross populations were developed utilizing the 63-2-13 line as the donor parent and two separate recurrent parents (WH1105 and HD3086). These populations underwent an exact selection regimen, encompassing parent-like phenotypes, heightened yield, and robust resistance to yellow rust, meticulously tracked across successive generations until the BC<sub>2</sub>F<sub>2:3</sub> stage. <b>Results and Discussion:</b> Notably, among the outcomes, selected BC<sub>2</sub>F<sub>2:3</sub> progenies presented remarkable increases in β-glucan levels, with a notable increase (BC<sub>2</sub>F<sub>2:3</sub> 23-5) resulting in an impressive increase in the 1.76% grain β-glucan content. Despite a discernible reduction in yield compared with their high-yielding counterparts, BC<sub>2</sub>F<sub>2:3</sub> 23-5 demonstrated a harmonious trait profile, encompassing heightened β-glucan content and moderate yellow rust resistance, thus positioning it as a compelling candidate for subsequent refinement endeavors. This research notably underscores the substantial potential of precise introgression strategies for increasing the β-glucan content in wheat, thereby underscoring the imperative of adept trait optimization to ensure both yield stability and nutritional enhancement.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1532956"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1532956","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: To address the urgent demand for biofortified wheat enriched with health-beneficial dietary fibres such as β-glucan, this study employed meticulous crossbreeding between established wheat cultivars and the β-glucan-rich wild relative Aegilops kotschyi accession "AK-3790". Methods: Within this context, a derivative line encompassing a pair of 7U chromosomes from Ae. Kotschyi, denoted as 63-2-13, was identified. The presence of the 7U chromosome in this line was confirmed through comprehensive molecular marker and genomic in situ hybridization (GISH) analyses. With the aim of increasing the β-glucan content in hexaploid wheat, two distinct backcross populations were developed utilizing the 63-2-13 line as the donor parent and two separate recurrent parents (WH1105 and HD3086). These populations underwent an exact selection regimen, encompassing parent-like phenotypes, heightened yield, and robust resistance to yellow rust, meticulously tracked across successive generations until the BC2F2:3 stage. Results and Discussion: Notably, among the outcomes, selected BC2F2:3 progenies presented remarkable increases in β-glucan levels, with a notable increase (BC2F2:3 23-5) resulting in an impressive increase in the 1.76% grain β-glucan content. Despite a discernible reduction in yield compared with their high-yielding counterparts, BC2F2:3 23-5 demonstrated a harmonious trait profile, encompassing heightened β-glucan content and moderate yellow rust resistance, thus positioning it as a compelling candidate for subsequent refinement endeavors. This research notably underscores the substantial potential of precise introgression strategies for increasing the β-glucan content in wheat, thereby underscoring the imperative of adept trait optimization to ensure both yield stability and nutritional enhancement.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.