Minimal Physiologically-Based Pharmacokinetic Modeling of Atenolol and Metoprolol Absorption in Malnourished Rats.

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Fatma Kir, Selma Sahin, William J Jusko
{"title":"Minimal Physiologically-Based Pharmacokinetic Modeling of Atenolol and Metoprolol Absorption in Malnourished Rats.","authors":"Fatma Kir, Selma Sahin, William J Jusko","doi":"10.1007/s13318-025-00943-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The pharmacokinetics of drugs can be altered by pathophysiological changes in the body that result from malnutrition. The objective of this study was to evaluate the profiles derived from in vivo studies conducted on non-malnourished (control) and malnourished rats using minimal physiologically based pharmacokinetic (mPBPK) models.</p><p><strong>Methods: </strong>Single oral doses of atenolol (ATN) and metoprolol (MET) were administered to non-malnourished and malnourished rats. We demonstrate how plasma profiles can be evaluated using mPBPK models with high and low tissue-to-plasma partition coefficients (K<sub>p</sub>) and elimination by either kidney or liver. A decrease in blood flow and cardiac output due to beta-blocker administration was assumed. Reference IV profiles from the literature were included to inform the mPBPK model and to help assess the absorption phases of individual oral profiles. Absorption was captured as two or three sequential zero-order processes for both drugs, and IV and oral profiles were assessed by joint fitting. Modeling was performed using both naïve pooling (ADAPT) and population (Monolix) analyses.</p><p><strong>Results: </strong>The experimental data show increased AUC values of MET and ATN in malnourished rats. Accordingly, an increased bioavailability (from 0.43 to 0.67) for ATN and an increased bioavailability (from 0.42 to 0.84) for MET in the malnourished group were related to higher absorption rates in both absorption phases.</p><p><strong>Conclusions: </strong>This study demonstrated advantageous use of mPBPK modeling with malnutrition primarily altering drug absorption in this animal model. Also, our analysis offers a blend of known and assumed components assembled mechanistically to suggest a reasonable interpretation of the PK profiles.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-025-00943-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: The pharmacokinetics of drugs can be altered by pathophysiological changes in the body that result from malnutrition. The objective of this study was to evaluate the profiles derived from in vivo studies conducted on non-malnourished (control) and malnourished rats using minimal physiologically based pharmacokinetic (mPBPK) models.

Methods: Single oral doses of atenolol (ATN) and metoprolol (MET) were administered to non-malnourished and malnourished rats. We demonstrate how plasma profiles can be evaluated using mPBPK models with high and low tissue-to-plasma partition coefficients (Kp) and elimination by either kidney or liver. A decrease in blood flow and cardiac output due to beta-blocker administration was assumed. Reference IV profiles from the literature were included to inform the mPBPK model and to help assess the absorption phases of individual oral profiles. Absorption was captured as two or three sequential zero-order processes for both drugs, and IV and oral profiles were assessed by joint fitting. Modeling was performed using both naïve pooling (ADAPT) and population (Monolix) analyses.

Results: The experimental data show increased AUC values of MET and ATN in malnourished rats. Accordingly, an increased bioavailability (from 0.43 to 0.67) for ATN and an increased bioavailability (from 0.42 to 0.84) for MET in the malnourished group were related to higher absorption rates in both absorption phases.

Conclusions: This study demonstrated advantageous use of mPBPK modeling with malnutrition primarily altering drug absorption in this animal model. Also, our analysis offers a blend of known and assumed components assembled mechanistically to suggest a reasonable interpretation of the PK profiles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
64
审稿时长
>12 weeks
期刊介绍: Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences. Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信