{"title":"Minimal Physiologically-Based Pharmacokinetic Modeling of Atenolol and Metoprolol Absorption in Malnourished Rats.","authors":"Fatma Kir, Selma Sahin, William J Jusko","doi":"10.1007/s13318-025-00943-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The pharmacokinetics of drugs can be altered by pathophysiological changes in the body that result from malnutrition. The objective of this study was to evaluate the profiles derived from in vivo studies conducted on non-malnourished (control) and malnourished rats using minimal physiologically based pharmacokinetic (mPBPK) models.</p><p><strong>Methods: </strong>Single oral doses of atenolol (ATN) and metoprolol (MET) were administered to non-malnourished and malnourished rats. We demonstrate how plasma profiles can be evaluated using mPBPK models with high and low tissue-to-plasma partition coefficients (K<sub>p</sub>) and elimination by either kidney or liver. A decrease in blood flow and cardiac output due to beta-blocker administration was assumed. Reference IV profiles from the literature were included to inform the mPBPK model and to help assess the absorption phases of individual oral profiles. Absorption was captured as two or three sequential zero-order processes for both drugs, and IV and oral profiles were assessed by joint fitting. Modeling was performed using both naïve pooling (ADAPT) and population (Monolix) analyses.</p><p><strong>Results: </strong>The experimental data show increased AUC values of MET and ATN in malnourished rats. Accordingly, an increased bioavailability (from 0.43 to 0.67) for ATN and an increased bioavailability (from 0.42 to 0.84) for MET in the malnourished group were related to higher absorption rates in both absorption phases.</p><p><strong>Conclusions: </strong>This study demonstrated advantageous use of mPBPK modeling with malnutrition primarily altering drug absorption in this animal model. Also, our analysis offers a blend of known and assumed components assembled mechanistically to suggest a reasonable interpretation of the PK profiles.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-025-00943-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: The pharmacokinetics of drugs can be altered by pathophysiological changes in the body that result from malnutrition. The objective of this study was to evaluate the profiles derived from in vivo studies conducted on non-malnourished (control) and malnourished rats using minimal physiologically based pharmacokinetic (mPBPK) models.
Methods: Single oral doses of atenolol (ATN) and metoprolol (MET) were administered to non-malnourished and malnourished rats. We demonstrate how plasma profiles can be evaluated using mPBPK models with high and low tissue-to-plasma partition coefficients (Kp) and elimination by either kidney or liver. A decrease in blood flow and cardiac output due to beta-blocker administration was assumed. Reference IV profiles from the literature were included to inform the mPBPK model and to help assess the absorption phases of individual oral profiles. Absorption was captured as two or three sequential zero-order processes for both drugs, and IV and oral profiles were assessed by joint fitting. Modeling was performed using both naïve pooling (ADAPT) and population (Monolix) analyses.
Results: The experimental data show increased AUC values of MET and ATN in malnourished rats. Accordingly, an increased bioavailability (from 0.43 to 0.67) for ATN and an increased bioavailability (from 0.42 to 0.84) for MET in the malnourished group were related to higher absorption rates in both absorption phases.
Conclusions: This study demonstrated advantageous use of mPBPK modeling with malnutrition primarily altering drug absorption in this animal model. Also, our analysis offers a blend of known and assumed components assembled mechanistically to suggest a reasonable interpretation of the PK profiles.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.