Pre-ischaemic empagliflozin treatment attenuates blood-brain barrier disruption via β-catenin mediated protection of cerebral endothelial cells.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Guohao Liu, Yanmei Qiu, Nanlin You, Mengchen Yu, Wenbo Chen, Tao Sun, Zhen Qin, Mengtao Han, Zhiwei Xue, Xiangjun Liang, Bo Mao, Lu Ling, Yanzhao Wu, Wenchen Xing, Quanmeng Liu, Donghai Wang
{"title":"Pre-ischaemic empagliflozin treatment attenuates blood-brain barrier disruption via β-catenin mediated protection of cerebral endothelial cells.","authors":"Guohao Liu, Yanmei Qiu, Nanlin You, Mengchen Yu, Wenbo Chen, Tao Sun, Zhen Qin, Mengtao Han, Zhiwei Xue, Xiangjun Liang, Bo Mao, Lu Ling, Yanzhao Wu, Wenchen Xing, Quanmeng Liu, Donghai Wang","doi":"10.1093/cvr/cvaf026","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Microvascular endothelial cells dysfunction can significantly worsen ischaemic stroke outcomes by disrupting tight junctions and increasing the acquisition of adhesion molecules, accelerating blood-brain barrier (BBB) disruption and pro-inflammatory response. The identification of drugs that improve endothelial cell function may be crucial for ischaemic stroke. It has been validated that empagliflozin (EMPA), a novel antidiabetic drug, protects endothelial cells regardless of the diabetic status of the patient. However, the impact of EMPA on stroke outcomes is unclear. We hypothesized that EMPA would exert a beneficial effect on ischaemic stroke outcome by protecting microvascular endothelial cells against tight junction disruption and the increase of adhesion molecules.</p><p><strong>Methods and results: </strong>Young adult male mice were administered with EMPA or vehicle (dimethyl sulfoxide) daily for 7 days before being subjected to transient middle cerebral artery occlusion (tMCAO). Neurological deficits were evaluated for up to 28 days post-tMCAO. Infarct volume, BBB disruption, and inflammatory status were assessed 1 day after tMCAO.bEnd.3 cells and primary brain microvascular endothelial cells were treated with EMPA or vehicle under oxygen and glucose deprivation/reperfusion (OGD/R), and the lactate dehydrogenase release, transendothelial electrical resistance, leakage of fluorescein isothiocyanate-dextran, and tight junction and adhesion molecules proteins were examined. Mechanistic studies probing the effect of EMPA on endothelial cells were conducted by RNA-seq. EMPA treatment before ischaemia markedly improved infarct volume, BBB disruption, and inflammation 1-day post-tMCAO, and further enhanced neurobehavioral function up to 28 days. Pre-treatment of EMPA attenuated endothelial cell dysfunction under OGD/R conditions. In mechanistic terms, RNA-seq data from isolated cerebral microvessels revealed that the Wnt/β-catenin signalling pathway was preserved in the EMPA group, in contrast to the vehicle group. Pre-treatment with EMPA inhibited β-catenin ubiquitination and promoted β-catenin translocation from the cytoplasm to the nucleus to improve endothelial cell function. Importantly, the β-catenin inhibitor XAV-939 eliminated this protective function of EMPA.</p><p><strong>Conclusion: </strong>EMPA administration before tMCAO attenuated ischaemia/reperfusion-induced BBB disruption and inflammation via β-catenin-mediated protection of cerebral microvascular endothelial cells. Therefore, EMPA shows potential for improving stroke outcomes as an adjunctive preventive strategy.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"788-802"},"PeriodicalIF":10.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Microvascular endothelial cells dysfunction can significantly worsen ischaemic stroke outcomes by disrupting tight junctions and increasing the acquisition of adhesion molecules, accelerating blood-brain barrier (BBB) disruption and pro-inflammatory response. The identification of drugs that improve endothelial cell function may be crucial for ischaemic stroke. It has been validated that empagliflozin (EMPA), a novel antidiabetic drug, protects endothelial cells regardless of the diabetic status of the patient. However, the impact of EMPA on stroke outcomes is unclear. We hypothesized that EMPA would exert a beneficial effect on ischaemic stroke outcome by protecting microvascular endothelial cells against tight junction disruption and the increase of adhesion molecules.

Methods and results: Young adult male mice were administered with EMPA or vehicle (dimethyl sulfoxide) daily for 7 days before being subjected to transient middle cerebral artery occlusion (tMCAO). Neurological deficits were evaluated for up to 28 days post-tMCAO. Infarct volume, BBB disruption, and inflammatory status were assessed 1 day after tMCAO.bEnd.3 cells and primary brain microvascular endothelial cells were treated with EMPA or vehicle under oxygen and glucose deprivation/reperfusion (OGD/R), and the lactate dehydrogenase release, transendothelial electrical resistance, leakage of fluorescein isothiocyanate-dextran, and tight junction and adhesion molecules proteins were examined. Mechanistic studies probing the effect of EMPA on endothelial cells were conducted by RNA-seq. EMPA treatment before ischaemia markedly improved infarct volume, BBB disruption, and inflammation 1-day post-tMCAO, and further enhanced neurobehavioral function up to 28 days. Pre-treatment of EMPA attenuated endothelial cell dysfunction under OGD/R conditions. In mechanistic terms, RNA-seq data from isolated cerebral microvessels revealed that the Wnt/β-catenin signalling pathway was preserved in the EMPA group, in contrast to the vehicle group. Pre-treatment with EMPA inhibited β-catenin ubiquitination and promoted β-catenin translocation from the cytoplasm to the nucleus to improve endothelial cell function. Importantly, the β-catenin inhibitor XAV-939 eliminated this protective function of EMPA.

Conclusion: EMPA administration before tMCAO attenuated ischaemia/reperfusion-induced BBB disruption and inflammation via β-catenin-mediated protection of cerebral microvascular endothelial cells. Therefore, EMPA shows potential for improving stroke outcomes as an adjunctive preventive strategy.

缺血前恩格列净治疗通过β-连环蛋白介导的脑内皮细胞保护减轻血脑屏障破坏。
目的:微血管内皮细胞功能障碍可通过破坏紧密连接、增加粘附分子的获取、加速血脑屏障(BBB)破坏和促炎反应,显著加重缺血性卒中的预后。改善内皮细胞功能的药物的鉴定可能对缺血性中风至关重要。研究证实,新型抗糖尿病药物恩帕列清(EMPA)无论患者是否患有糖尿病,都能保护内皮细胞。然而,EMPA对卒中预后的影响尚不清楚。我们假设EMPA通过保护微血管内皮细胞免受紧密连接破坏和粘附分子增加而对缺血性卒中结果产生有益影响。方法和结果:年轻成年雄性小鼠在进行短暂性大脑中动脉闭塞(tMCAO)之前,每天给予EMPA或二甲基亚砜(二甲基亚砜),连续7天。在tmcao后28天内评估神经功能缺损。tMCAO.bEnd术后1天评估梗死面积、血脑屏障破坏和炎症状态。用EMPA或载药处理3个细胞和原代脑微血管内皮细胞,在氧葡萄糖剥夺/再灌注(OGD/R)条件下,检测乳酸脱氢酶释放、跨内皮电阻、异硫氰酸-葡聚糖荧光素渗漏、紧密连接和粘附分子蛋白。通过RNA-seq技术探讨了EMPA对内皮细胞的作用机制。缺血前的EMPA治疗可显著改善缺血面积、血脑屏障破坏和炎症,并可进一步增强28天的神经行为功能。EMPA预处理可减轻OGD/R条件下内皮细胞功能障碍。在机制方面,来自离体脑微血管的RNA-seq数据显示,与载药组相比,EMPA组保留了Wnt/β-catenin信号通路。EMPA预处理抑制β-catenin泛素化,促进β-catenin从细胞质向细胞核转运,改善内皮细胞功能。重要的是,β-catenin抑制剂XAV-939消除了EMPA的这种保护功能。结论:tMCAO前给药EMPA可通过β-连环蛋白介导的脑微血管内皮细胞保护,减轻缺血/再灌注诱导的血脑屏障破坏和炎症。因此,EMPA作为一种辅助预防策略显示出改善脑卒中结局的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信