CoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yahao Wu, Jing Liu, Yanni Xiao, Shuqin Zhang, Limin Li
{"title":"CoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data.","authors":"Yahao Wu, Jing Liu, Yanni Xiao, Shuqin Zhang, Limin Li","doi":"10.1093/bib/bbaf126","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advances in single-cell sequencing technology, it is now feasible to conduct in-depth genetic analysis in individual cells. Study on the dynamics of single cells in response to perturbations is of great significance for understanding the functions and behaviors of living organisms. However, the acquisition of post-perturbation cellular states via biological experiments is frequently cost-prohibitive. Predicting the single-cell perturbation responses poses a critical challenge in the field of computational biology. In this work, we propose a novel deep learning method called coupled variational autoencoders (CoupleVAE), devised to predict the postperturbation single-cell RNA-Seq data. CoupleVAE is composed of two coupled VAEs connected by a coupler, initially extracting latent features for controlled and perturbed cells via two encoders, subsequently engaging in mutual translation within the latent space through two nonlinear mappings via a coupler, and ultimately generating controlled and perturbed data by two separate decoders to process the encoded and translated features. CoupleVAE facilitates a more intricate state transformation of single cells within the latent space. Experiments in three real datasets on infection, stimulation and cross-species prediction show that CoupleVAE surpasses the existing comparative models in effectively predicting single-cell RNA-seq data for perturbed cells, achieving superior accuracy.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf126","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advances in single-cell sequencing technology, it is now feasible to conduct in-depth genetic analysis in individual cells. Study on the dynamics of single cells in response to perturbations is of great significance for understanding the functions and behaviors of living organisms. However, the acquisition of post-perturbation cellular states via biological experiments is frequently cost-prohibitive. Predicting the single-cell perturbation responses poses a critical challenge in the field of computational biology. In this work, we propose a novel deep learning method called coupled variational autoencoders (CoupleVAE), devised to predict the postperturbation single-cell RNA-Seq data. CoupleVAE is composed of two coupled VAEs connected by a coupler, initially extracting latent features for controlled and perturbed cells via two encoders, subsequently engaging in mutual translation within the latent space through two nonlinear mappings via a coupler, and ultimately generating controlled and perturbed data by two separate decoders to process the encoded and translated features. CoupleVAE facilitates a more intricate state transformation of single cells within the latent space. Experiments in three real datasets on infection, stimulation and cross-species prediction show that CoupleVAE surpasses the existing comparative models in effectively predicting single-cell RNA-seq data for perturbed cells, achieving superior accuracy.

耦合变分自编码器预测微扰单细胞RNA测序数据。
随着单细胞测序技术的快速发展,对单个细胞进行深入的遗传分析已经成为可能。研究单细胞对扰动的响应动力学对于理解生物的功能和行为具有重要意义。然而,通过生物实验获得扰动后的细胞状态往往成本过高。预测单细胞扰动响应是计算生物学领域的一个重要挑战。在这项工作中,我们提出了一种新的深度学习方法,称为耦合变分自编码器(CoupleVAE),旨在预测扰动后的单细胞RNA-Seq数据。CoupleVAE由耦合器连接的两个耦合vae组成,最初通过两个编码器提取受控和扰动细胞的潜在特征,随后通过耦合器通过两个非线性映射在潜在空间内相互翻译,最终由两个独立的解码器生成受控和扰动数据,对编码和翻译的特征进行处理。CoupleVAE促进了潜伏空间内单细胞更复杂的状态转换。在感染、刺激和跨物种预测三个真实数据集上进行的实验表明,CoupleVAE在有效预测受干扰细胞的单细胞RNA-seq数据方面优于现有的比较模型,具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信