Integrated transcriptomics and metabolomics to explore the mechanisms of Elaeagnus mollis diels seed viability decline.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ren Ruifen, Guo Jiayi, Ji Zhe, Du Shuhui, Yang Xiuyun
{"title":"Integrated transcriptomics and metabolomics to explore the mechanisms of Elaeagnus mollis diels seed viability decline.","authors":"Ren Ruifen, Guo Jiayi, Ji Zhe, Du Shuhui, Yang Xiuyun","doi":"10.1186/s12864-025-11483-3","DOIUrl":null,"url":null,"abstract":"<p><p>Elaeagnus mollis Diels, is a rare and endangered woody plant endemic to China, which is listed on the IUCN Red List. In the natural state, the viability of its seeds declines very rapidly, which is the key to its endangered status, but the mechanism of E. mollis seed viability decline is still unclear. In order to explore the physiological and molecular mechanism of viability decline of E. mollis seeds, this study used fresh seeds as a control to compare and analyze the changes of seed vitality, antioxidant system, transcription and metabolomics, when seeds were stored for 1 and 3 months at room temperature. The viability of E. mollis seed decreased continuously after 1 month and 3 months of storage. The activities of superoxide dismutase (SOD), monodehydroascorbate reductase (MDHAR), ascorbate (AsA), and glutathione (GSH) decreased significantly, while catalase (CAT) activity increased gradually during the decline of seed viability. Transcriptomic results showed that a total of 801 differentially expressed genes (DEGs) were identified between fresh and 1-month-stored seeds, while 1,524 were identified between fresh and 3-month-stored seeds. Among them, the expression of CAT, MDHAR, GSH and GR were consistent with the results of physiological indicators. Moreover, WRKY, C3H, bZIP, B3, bHLH, NAC and AP2 / ERF-ERF transcription factors are important in regulating seed viability. Metabolomics results showed that the types of differential accumulated metabolites (DAMs) during viability decline were mainly flavonoids, amino acids and derivatives, and phenolic acids. The combined analysis results of transcriptomics and metabolomics further showed that DEGs and DAMs associated with viability were co-enriched in flavonoid biosynthesis and tryptophan metabolism pathways. Also identified were 22 key antioxidant genes, including CAT, ALDH, CHS and C4H, which were identified as participating in the changes of seed viability. This also illustrated that the metabolic pathways of flavonoid biosynthesis and tryptophan metabolism were involved in regulating the decline of seed viability by acting on the antioxidant system. These findings provide new insights into the mechanism of seed viability decline of E. mollis.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"333"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11483-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elaeagnus mollis Diels, is a rare and endangered woody plant endemic to China, which is listed on the IUCN Red List. In the natural state, the viability of its seeds declines very rapidly, which is the key to its endangered status, but the mechanism of E. mollis seed viability decline is still unclear. In order to explore the physiological and molecular mechanism of viability decline of E. mollis seeds, this study used fresh seeds as a control to compare and analyze the changes of seed vitality, antioxidant system, transcription and metabolomics, when seeds were stored for 1 and 3 months at room temperature. The viability of E. mollis seed decreased continuously after 1 month and 3 months of storage. The activities of superoxide dismutase (SOD), monodehydroascorbate reductase (MDHAR), ascorbate (AsA), and glutathione (GSH) decreased significantly, while catalase (CAT) activity increased gradually during the decline of seed viability. Transcriptomic results showed that a total of 801 differentially expressed genes (DEGs) were identified between fresh and 1-month-stored seeds, while 1,524 were identified between fresh and 3-month-stored seeds. Among them, the expression of CAT, MDHAR, GSH and GR were consistent with the results of physiological indicators. Moreover, WRKY, C3H, bZIP, B3, bHLH, NAC and AP2 / ERF-ERF transcription factors are important in regulating seed viability. Metabolomics results showed that the types of differential accumulated metabolites (DAMs) during viability decline were mainly flavonoids, amino acids and derivatives, and phenolic acids. The combined analysis results of transcriptomics and metabolomics further showed that DEGs and DAMs associated with viability were co-enriched in flavonoid biosynthesis and tryptophan metabolism pathways. Also identified were 22 key antioxidant genes, including CAT, ALDH, CHS and C4H, which were identified as participating in the changes of seed viability. This also illustrated that the metabolic pathways of flavonoid biosynthesis and tryptophan metabolism were involved in regulating the decline of seed viability by acting on the antioxidant system. These findings provide new insights into the mechanism of seed viability decline of E. mollis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信