Parental kynurenine 3-monooxygenase genotype in mice directs sex-specific behavioral outcomes in offspring.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Snezana Milosavljevic, Maria V Piroli, Emma J Sandago, Gerardo G Piroli, Holland H Smith, Sarah Beggiato, Norma Frizzell, Ana Pocivavsek
{"title":"Parental kynurenine 3-monooxygenase genotype in mice directs sex-specific behavioral outcomes in offspring.","authors":"Snezana Milosavljevic, Maria V Piroli, Emma J Sandago, Gerardo G Piroli, Holland H Smith, Sarah Beggiato, Norma Frizzell, Ana Pocivavsek","doi":"10.1186/s13293-025-00703-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disruptions in brain development can impact behavioral traits and increase the risk of neurodevelopmental conditions such as autism spectrum disorder, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder, often in sex-specific ways. Dysregulation of the kynurenine pathway (KP) of tryptophan metabolism has been implicated in cognitive and neurodevelopmental disorders. Increased brain kynurenic acid (KYNA), a neuroactive metabolite implicated in cognition and sleep homeostasis, and variations in the Kmo gene, which encodes kynurenine 3-monooxygenase (KMO), have been identified in these patients. We hypothesize that parental Kmo genetics influence KP biochemistry, sleep behavior and brain energy demands, contributing to impairments in cognition and sleep in offspring through the influence of parental genotype and genetic nurture mechanisms.</p><p><strong>Methods: </strong>A mouse model of partial Kmo deficiency, Kmo heterozygous (HET-Kmo<sup>+/-</sup>), was used to examine brain KMO activity, KYNA levels, and sleep behavior in HET-Kmo<sup>+/-</sup> compared to wild-type control (WT-Control) mice. Brain mitochondrial respiration was assessed, and KP metabolites and corticosterone levels were measured in breast milk. Behavioral assessments were conducted on wild-type offspring from two parental groups: (i) WT-Control from WT-Control parents, (ii) wild-type Kmo (WT-Kmo<sup>+/+</sup>) from Kmo heterozygous parents (HET-Kmo<sup>+/-</sup>). All mice were C57Bl/6J background strain. Adult female and male offspring underwent behavioral testing for learning, memory, anxiety-like behavior and sleep-wake patterns.</p><p><strong>Results: </strong>HET-Kmo<sup>+/-</sup> mice exhibited reduced brain KMO activity, increased KYNA levels, and disrupted sleep architecture and electroencephalogram (EEG) power spectra. Mitochondrial respiration (Complex I and Complex II activity) and electron transport chain protein levels were impaired in the hippocampus of HET-Kmo<sup>+/-</sup> females. Breast milk from HET-Kmo<sup>+/-</sup> mothers increased kynurenine exposure during lactation but corticosterone levels were unchanged. Compared to WT-Control offspring, WT-Kmo<sup>+/+</sup> females showed impaired spatial learning, heightened anxiety, reduced sleep and abnormal EEG spectral power. WT-Kmo<sup>+/+</sup> males had deficits in reversal learning but no sleep disturbances or anxiety-like behaviors.</p><p><strong>Conclusions: </strong>These findings suggest that Kmo deficiency impacts KP biochemistry, sleep behavior, and brain mitochondrial function. Even though WT-Kmo<sup>+/+</sup> inherit identical genetic material as WT-Control, their development might be shaped by the parent's physiology, behavior, or metabolic state influenced by their Kmo genotype, leading to phenotypic sex-specific differences in offspring.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"16 1","pages":"22"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-025-00703-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Disruptions in brain development can impact behavioral traits and increase the risk of neurodevelopmental conditions such as autism spectrum disorder, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder, often in sex-specific ways. Dysregulation of the kynurenine pathway (KP) of tryptophan metabolism has been implicated in cognitive and neurodevelopmental disorders. Increased brain kynurenic acid (KYNA), a neuroactive metabolite implicated in cognition and sleep homeostasis, and variations in the Kmo gene, which encodes kynurenine 3-monooxygenase (KMO), have been identified in these patients. We hypothesize that parental Kmo genetics influence KP biochemistry, sleep behavior and brain energy demands, contributing to impairments in cognition and sleep in offspring through the influence of parental genotype and genetic nurture mechanisms.

Methods: A mouse model of partial Kmo deficiency, Kmo heterozygous (HET-Kmo+/-), was used to examine brain KMO activity, KYNA levels, and sleep behavior in HET-Kmo+/- compared to wild-type control (WT-Control) mice. Brain mitochondrial respiration was assessed, and KP metabolites and corticosterone levels were measured in breast milk. Behavioral assessments were conducted on wild-type offspring from two parental groups: (i) WT-Control from WT-Control parents, (ii) wild-type Kmo (WT-Kmo+/+) from Kmo heterozygous parents (HET-Kmo+/-). All mice were C57Bl/6J background strain. Adult female and male offspring underwent behavioral testing for learning, memory, anxiety-like behavior and sleep-wake patterns.

Results: HET-Kmo+/- mice exhibited reduced brain KMO activity, increased KYNA levels, and disrupted sleep architecture and electroencephalogram (EEG) power spectra. Mitochondrial respiration (Complex I and Complex II activity) and electron transport chain protein levels were impaired in the hippocampus of HET-Kmo+/- females. Breast milk from HET-Kmo+/- mothers increased kynurenine exposure during lactation but corticosterone levels were unchanged. Compared to WT-Control offspring, WT-Kmo+/+ females showed impaired spatial learning, heightened anxiety, reduced sleep and abnormal EEG spectral power. WT-Kmo+/+ males had deficits in reversal learning but no sleep disturbances or anxiety-like behaviors.

Conclusions: These findings suggest that Kmo deficiency impacts KP biochemistry, sleep behavior, and brain mitochondrial function. Even though WT-Kmo+/+ inherit identical genetic material as WT-Control, their development might be shaped by the parent's physiology, behavior, or metabolic state influenced by their Kmo genotype, leading to phenotypic sex-specific differences in offspring.

小鼠亲代犬尿氨酸3-单加氧酶基因型指导后代性别特异性行为结果。
背景:大脑发育的中断会影响行为特征,增加神经发育疾病的风险,如自闭症谱系障碍、注意力缺陷/多动障碍(ADHD)、精神分裂症和双相情感障碍,通常以性别特异性的方式发生。色氨酸代谢的犬尿氨酸途径(KP)的失调与认知和神经发育障碍有关。在这些患者中发现了脑犬尿氨酸(KYNA)增加,一种与认知和睡眠稳态有关的神经活性代谢物,以及编码犬尿氨酸3-单加氧酶(Kmo)的Kmo基因的变异。我们假设亲代Kmo基因影响KP生化、睡眠行为和大脑能量需求,通过亲代基因型和遗传养育机制影响后代的认知和睡眠障碍。方法:采用部分Kmo缺乏症小鼠模型,Kmo杂合型(ht -Kmo+/-),与野生型对照(WT-Control)小鼠比较,检测ht -Kmo+/-小鼠的脑Kmo活性、KYNA水平和睡眠行为。评估脑线粒体呼吸,并测量母乳中的KP代谢物和皮质酮水平。对来自WT-Control亲本的WT-Control和来自Kmo杂合亲本(ht -Kmo+/-)的野生型Kmo (WT-Kmo+/+)进行行为评价。所有小鼠均为C57Bl/6J背景菌株。成年雌性和雄性后代接受了学习、记忆、焦虑类行为和睡眠-觉醒模式的行为测试。结果:HET-Kmo+/-小鼠表现出脑KMO活性降低,KYNA水平升高,睡眠结构和脑电图(EEG)功率谱紊乱。HET-Kmo+/-雌性海马区线粒体呼吸(复合体I和复合体II活性)和电子传递链蛋白水平受损。HET-Kmo+/-母亲的母乳在哺乳期增加了犬尿氨酸暴露,但皮质酮水平不变。与wt -对照组相比,WT-Kmo+/+雌性表现出空间学习障碍、焦虑加剧、睡眠减少和脑电图谱功率异常。WT-Kmo+/+的男性在逆向学习方面有缺陷,但没有睡眠障碍或焦虑样行为。结论:这些发现提示Kmo缺乏影响KP生化、睡眠行为和脑线粒体功能。尽管WT-Kmo+/+与WT-Control遗传相同的遗传物质,但它们的发育可能受到亲本的生理、行为或受其Kmo基因型影响的代谢状态的影响,从而导致后代表型上的性别差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of Sex Differences
Biology of Sex Differences ENDOCRINOLOGY & METABOLISM-GENETICS & HEREDITY
CiteScore
12.10
自引率
1.30%
发文量
69
审稿时长
14 weeks
期刊介绍: Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research. Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信