Aurora A binds to the transactivation domain of c-Myc and recognizes the phosphorylated N-terminal degron motif.

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nidhi Joshi, Katie M Dunleavy, Kaitlin M Beel, Tiffany A Engel, Andrew R Thompson, Felix L John, David D Thomas, Nicholas M Levinson
{"title":"Aurora A binds to the transactivation domain of c-Myc and recognizes the phosphorylated N-terminal degron motif.","authors":"Nidhi Joshi, Katie M Dunleavy, Kaitlin M Beel, Tiffany A Engel, Andrew R Thompson, Felix L John, David D Thomas, Nicholas M Levinson","doi":"10.1042/BCJ20240726","DOIUrl":null,"url":null,"abstract":"<p><p>The oncoprotein c-Myc is overexpressed or mutated in a large fraction of human cancers. The stability of c-Myc is controlled by phosphorylation of T58 and S62 within a conserved degron motif in the N-terminal transactivation domain, which triggers recruitment of the SCF ubiquitin ligase. The kinase Aurora A (AurA) has been shown to bind to both c-Myc and its paralog N-Myc and to promote their stability by interfering with ubiquitination and degradation. Here we show, using NMR and FRET experiments, that AurA binds to c-Myc through several discrete interactions spanning 145 residues within its transactivation domain. AurA binding to c-Myc is enhanced by phosphorylation of the T58/S62 degron, demonstrating that the kinase recognizes the pool of c-Myc that has been marked for degradation by the ubiquitin proteasome pathway. Although AurA binds to segments of c-Myc flanking the degron, it does not appear to form extensive interactions with the phosphorylated degron itself, potentially leaving it accessible on the AurA surface. These observations establish a foundation for understanding the role of AurA in regulating c-Myc ubiquitination and degradation.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240726","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oncoprotein c-Myc is overexpressed or mutated in a large fraction of human cancers. The stability of c-Myc is controlled by phosphorylation of T58 and S62 within a conserved degron motif in the N-terminal transactivation domain, which triggers recruitment of the SCF ubiquitin ligase. The kinase Aurora A (AurA) has been shown to bind to both c-Myc and its paralog N-Myc and to promote their stability by interfering with ubiquitination and degradation. Here we show, using NMR and FRET experiments, that AurA binds to c-Myc through several discrete interactions spanning 145 residues within its transactivation domain. AurA binding to c-Myc is enhanced by phosphorylation of the T58/S62 degron, demonstrating that the kinase recognizes the pool of c-Myc that has been marked for degradation by the ubiquitin proteasome pathway. Although AurA binds to segments of c-Myc flanking the degron, it does not appear to form extensive interactions with the phosphorylated degron itself, potentially leaving it accessible on the AurA surface. These observations establish a foundation for understanding the role of AurA in regulating c-Myc ubiquitination and degradation.

Aurora A结合到c-Myc的转激活域并识别磷酸化的n端脱基序。
癌蛋白c-Myc在大部分人类癌症中过度表达或突变。c-Myc的稳定性受n端转激活域中保守的退化基序中T58和S62的磷酸化控制,从而触发SCF泛素连接酶的募集。Aurora激酶A (AurA)已被证明与c-Myc及其相似的N-Myc结合,并通过干扰泛素化和降解来促进它们的稳定性。在这里,我们使用NMR和FRET实验表明,AurA通过几个离散的相互作用与c-Myc结合,这些相互作用跨越了其转激活域中的145个残基。通过T58/S62位点的磷酸化,AurA与c-Myc的结合得到增强,这表明该激酶识别了被泛素蛋白酶体途径标记为降解的c-Myc库。尽管AurA与degron侧面的c-Myc片段结合,但它似乎不会与磷酸化的degron本身形成广泛的相互作用,从而可能使其在AurA表面上可接近。这些观察结果为理解AurA在调节c-Myc泛素化和降解中的作用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信