Vijay Kumar Nuthakki, Rakesh Barik, Sharanabassappa B Gangashetty, Gatadi Srikanth
{"title":"Advanced molecular modeling of proteins: Methods, breakthroughs, and future prospects.","authors":"Vijay Kumar Nuthakki, Rakesh Barik, Sharanabassappa B Gangashetty, Gatadi Srikanth","doi":"10.1016/bs.apha.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>The contemporary advancements in molecular modeling of proteins have significantly enhanced our comprehension of biological processes and the functional roles of proteins on a global scale. The application of advanced methodologies, including homology modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics strategies, has empowered numerous researchers to forecast the behavior of protein macromolecules, elucidate drug-protein interactions, and develop drugs with enhanced precision. This chapter elucidates the advent of deep learning algorithms such as AlphaFold, a notable advancement that has significantly improved the precision of intricate protein structure predictions. The recent advancements have significantly enhanced the precision of protein predictions and expedited drug discovery and development processes. Integrating approaches like multi-scale modeling and hybrid methods incorporating reliable experimental data is anticipated to revolutionize and offer more significant implications for precision medicine and targeted treatments.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"23-41"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
The contemporary advancements in molecular modeling of proteins have significantly enhanced our comprehension of biological processes and the functional roles of proteins on a global scale. The application of advanced methodologies, including homology modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics strategies, has empowered numerous researchers to forecast the behavior of protein macromolecules, elucidate drug-protein interactions, and develop drugs with enhanced precision. This chapter elucidates the advent of deep learning algorithms such as AlphaFold, a notable advancement that has significantly improved the precision of intricate protein structure predictions. The recent advancements have significantly enhanced the precision of protein predictions and expedited drug discovery and development processes. Integrating approaches like multi-scale modeling and hybrid methods incorporating reliable experimental data is anticipated to revolutionize and offer more significant implications for precision medicine and targeted treatments.