Advanced molecular modeling of proteins: Methods, breakthroughs, and future prospects.

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-28 DOI:10.1016/bs.apha.2025.02.005
Vijay Kumar Nuthakki, Rakesh Barik, Sharanabassappa B Gangashetty, Gatadi Srikanth
{"title":"Advanced molecular modeling of proteins: Methods, breakthroughs, and future prospects.","authors":"Vijay Kumar Nuthakki, Rakesh Barik, Sharanabassappa B Gangashetty, Gatadi Srikanth","doi":"10.1016/bs.apha.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>The contemporary advancements in molecular modeling of proteins have significantly enhanced our comprehension of biological processes and the functional roles of proteins on a global scale. The application of advanced methodologies, including homology modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics strategies, has empowered numerous researchers to forecast the behavior of protein macromolecules, elucidate drug-protein interactions, and develop drugs with enhanced precision. This chapter elucidates the advent of deep learning algorithms such as AlphaFold, a notable advancement that has significantly improved the precision of intricate protein structure predictions. The recent advancements have significantly enhanced the precision of protein predictions and expedited drug discovery and development processes. Integrating approaches like multi-scale modeling and hybrid methods incorporating reliable experimental data is anticipated to revolutionize and offer more significant implications for precision medicine and targeted treatments.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"23-41"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The contemporary advancements in molecular modeling of proteins have significantly enhanced our comprehension of biological processes and the functional roles of proteins on a global scale. The application of advanced methodologies, including homology modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics strategies, has empowered numerous researchers to forecast the behavior of protein macromolecules, elucidate drug-protein interactions, and develop drugs with enhanced precision. This chapter elucidates the advent of deep learning algorithms such as AlphaFold, a notable advancement that has significantly improved the precision of intricate protein structure predictions. The recent advancements have significantly enhanced the precision of protein predictions and expedited drug discovery and development processes. Integrating approaches like multi-scale modeling and hybrid methods incorporating reliable experimental data is anticipated to revolutionize and offer more significant implications for precision medicine and targeted treatments.

先进的蛋白质分子建模:方法、突破和未来展望。
蛋白质分子建模的当代进步极大地增强了我们对全球范围内的生物过程和蛋白质功能作用的理解。同源建模、分子动力学模拟和量子力学/分子力学策略等先进方法的应用,使众多研究人员能够预测蛋白质大分子的行为,阐明药物与蛋白质之间的相互作用,并更精确地开发药物。本章阐述了 AlphaFold 等深度学习算法的出现,这一显著进步大大提高了复杂蛋白质结构预测的精度。最近的进步大大提高了蛋白质预测的精度,加快了药物发现和开发进程。将多尺度建模和混合方法等方法与可靠的实验数据相结合,预计将为精准医学和靶向治疗带来革命性的变化和更重大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信