Requirement for Cyclin D1 Underlies Cell Autonomous HIF2-Dependence in Kidney Cancer.

IF 29.7 1区 医学 Q1 ONCOLOGY
Nitin H Shirole, Devishi Kesar, Yenarae Lee, Amy Goodale, Sudeepa Syamala, Shweta Kukreja, Rong Li, Xintao Qiu, Wenyu Yu, Seth Goldman, Paloma Cejas, Henry W Long, Karen Adelman, John G Doench, William R Sellers, William G Kaelin
{"title":"Requirement for Cyclin D1 Underlies Cell Autonomous HIF2-Dependence in Kidney Cancer.","authors":"Nitin H Shirole, Devishi Kesar, Yenarae Lee, Amy Goodale, Sudeepa Syamala, Shweta Kukreja, Rong Li, Xintao Qiu, Wenyu Yu, Seth Goldman, Paloma Cejas, Henry W Long, Karen Adelman, John G Doench, William R Sellers, William G Kaelin","doi":"10.1158/2159-8290.CD-24-1378","DOIUrl":null,"url":null,"abstract":"<p><p>Inactivation of the VHL gene stabilizes HIF2a, which drives clear cell renal carcinoma (ccRCC). The HIF2a inhibitor belzutifan is approved for ccRCC treatment, but de novo and acquired resistance are common. HIF2a, bound to ARNT, transcriptionally activates many genes. We performed CRISPRa screens in HIF2a-dependent ccRCC lines treated with a belzutifan analog to identify HIF2a-responsive genes that confer cell-autonomous belzutifan resistance when not downregulated. Sustaining the expression of the HIF2a target gene CCND1, encoding Cyclin D1, promoted HIF2a-independence/belzutifan resistance. This activity requires Cdk4/6 activation by Cyclin D1, but is not solely due to phosphorylation of the canonical Cyclin D1 target, pRB. Indeed, ccRCC lines lacking all three pRB family members remained at least partially HIF2a-dependent. In this context, however, a kinase-defective Cyclin D1 variant partially overrode belzutifan's antiproliferative effects, suggesting that ccRCC promotion by Cyclin D1 requires the phosphorylation of pRB paralogs and one or more kinase-independent Cyclin D1 activities.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":""},"PeriodicalIF":29.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-1378","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inactivation of the VHL gene stabilizes HIF2a, which drives clear cell renal carcinoma (ccRCC). The HIF2a inhibitor belzutifan is approved for ccRCC treatment, but de novo and acquired resistance are common. HIF2a, bound to ARNT, transcriptionally activates many genes. We performed CRISPRa screens in HIF2a-dependent ccRCC lines treated with a belzutifan analog to identify HIF2a-responsive genes that confer cell-autonomous belzutifan resistance when not downregulated. Sustaining the expression of the HIF2a target gene CCND1, encoding Cyclin D1, promoted HIF2a-independence/belzutifan resistance. This activity requires Cdk4/6 activation by Cyclin D1, but is not solely due to phosphorylation of the canonical Cyclin D1 target, pRB. Indeed, ccRCC lines lacking all three pRB family members remained at least partially HIF2a-dependent. In this context, however, a kinase-defective Cyclin D1 variant partially overrode belzutifan's antiproliferative effects, suggesting that ccRCC promotion by Cyclin D1 requires the phosphorylation of pRB paralogs and one or more kinase-independent Cyclin D1 activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信