S Suveena, Akhiya Anilkumar Rekha, J R Rani, Oommen V Oommen, Reshmi Ramakrishnan
{"title":"The translational impact of bioinformatics on traditional wet lab techniques.","authors":"S Suveena, Akhiya Anilkumar Rekha, J R Rani, Oommen V Oommen, Reshmi Ramakrishnan","doi":"10.1016/bs.apha.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinformatics has taken a pivotal place in the life sciences field. Not only does it improve, but it also fine-tunes and complements the wet lab experiments. It has been a driving force in the so-called biological sciences, converting them into hypothesis and data-driven fields. This study highlights the translational impact of bioinformatics on experimental biology and discusses its evolution and the advantages it has brought to advancing biological research. Computational analyses make labor-intensive wet lab work cost-effective by reducing the use of expensive reagents. Genome/proteome-wide studies have become feasible due to the efficiency and speed of bioinformatics tools, which can hardly be compared with wet lab experiments. Computational methods provide the scalability essential for manipulating large and complex data of biological origin. AI-integrated bioinformatics studies can unveil important biological patterns that traditional approaches may otherwise overlook. Bioinformatics contributes to hypothesis formation and experiment design, which is pivotal for modern-day multi-omics and systems biology studies. Integrating bioinformatics in the experimental procedures increases reproducibility and helps reduce human errors. Although today's AI-integrated bioinformatics predictions have significantly improved in accuracy over the years, wet lab validation is still unavoidable for confirming these predictions. Challenges persist in multi-omics data integration and analysis, AI model interpretability, and multiscale modeling. Addressing these shortcomings through the latest developments is essential for advancing our knowledge of disease mechanisms, therapeutic strategies, and precision medicine.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"287-311"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.01.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Bioinformatics has taken a pivotal place in the life sciences field. Not only does it improve, but it also fine-tunes and complements the wet lab experiments. It has been a driving force in the so-called biological sciences, converting them into hypothesis and data-driven fields. This study highlights the translational impact of bioinformatics on experimental biology and discusses its evolution and the advantages it has brought to advancing biological research. Computational analyses make labor-intensive wet lab work cost-effective by reducing the use of expensive reagents. Genome/proteome-wide studies have become feasible due to the efficiency and speed of bioinformatics tools, which can hardly be compared with wet lab experiments. Computational methods provide the scalability essential for manipulating large and complex data of biological origin. AI-integrated bioinformatics studies can unveil important biological patterns that traditional approaches may otherwise overlook. Bioinformatics contributes to hypothesis formation and experiment design, which is pivotal for modern-day multi-omics and systems biology studies. Integrating bioinformatics in the experimental procedures increases reproducibility and helps reduce human errors. Although today's AI-integrated bioinformatics predictions have significantly improved in accuracy over the years, wet lab validation is still unavoidable for confirming these predictions. Challenges persist in multi-omics data integration and analysis, AI model interpretability, and multiscale modeling. Addressing these shortcomings through the latest developments is essential for advancing our knowledge of disease mechanisms, therapeutic strategies, and precision medicine.