Predictive cavity and binding site identification: Techniques and applications.

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-28 DOI:10.1016/bs.apha.2025.02.006
Shilpa Chandel, Bharat Parashar, Syed Atif Ali, Shailesh Sharma
{"title":"Predictive cavity and binding site identification: Techniques and applications.","authors":"Shilpa Chandel, Bharat Parashar, Syed Atif Ali, Shailesh Sharma","doi":"10.1016/bs.apha.2025.02.006","DOIUrl":null,"url":null,"abstract":"<p><p>Strategies for recognizing predictive cavities and binding site identification are decisive for drug discovery, molecular docking, and tracing protein-ligand interactions. The two major approaches experimental and computational strive for prognosticating and distinguishing protein's binding sites. Profuse diminutive molecules are associated with the binding sites and influence normal biological functioning. The various structure-based strategies such as molecular dynamics, docking simulations, algorithms for pocket identification, and homology modeling are covered under computational techniques, where they propound the exhaustive comprehension of possible binding pockets hinge on the structure of protein and its physiochemical properties. The various sequence-based approaches rely on the homogeneousness of the sequence and machine learning replicas edified on already known protein and ligand composites to anticipate the interactive sites of novel proteins. The high-resolution structural identification and foot printing of protein to map the confirmational changes attributable to ligand and binding sites can be identified through diverse experimental methods such as NMR spectroscopy, mass spectrometry, and x-ray crystallography. These techniques are pivotal for drug discovery and designing, as the efficiency and specificity of ligands can be amplified through virtual screening and structural-based drug designing. Moreover, the ongoing developments in this domain promise to drive the revolution and efficiency in drug discovery and research in molecular biology.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"43-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Strategies for recognizing predictive cavities and binding site identification are decisive for drug discovery, molecular docking, and tracing protein-ligand interactions. The two major approaches experimental and computational strive for prognosticating and distinguishing protein's binding sites. Profuse diminutive molecules are associated with the binding sites and influence normal biological functioning. The various structure-based strategies such as molecular dynamics, docking simulations, algorithms for pocket identification, and homology modeling are covered under computational techniques, where they propound the exhaustive comprehension of possible binding pockets hinge on the structure of protein and its physiochemical properties. The various sequence-based approaches rely on the homogeneousness of the sequence and machine learning replicas edified on already known protein and ligand composites to anticipate the interactive sites of novel proteins. The high-resolution structural identification and foot printing of protein to map the confirmational changes attributable to ligand and binding sites can be identified through diverse experimental methods such as NMR spectroscopy, mass spectrometry, and x-ray crystallography. These techniques are pivotal for drug discovery and designing, as the efficiency and specificity of ligands can be amplified through virtual screening and structural-based drug designing. Moreover, the ongoing developments in this domain promise to drive the revolution and efficiency in drug discovery and research in molecular biology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信