Clara Whyte Ferreira, Bastien Cabrera-Tejera, Bernard Leyh, Romain Tuyaerts, Gilles Scheen, Yannick Coffinier, Edwin De Pauw, Gauthier Eppe
{"title":"A Practical Approach for Internal Energy Tuning in LDI-MS: Porous Silicon Substrates as a Case Study.","authors":"Clara Whyte Ferreira, Bastien Cabrera-Tejera, Bernard Leyh, Romain Tuyaerts, Gilles Scheen, Yannick Coffinier, Edwin De Pauw, Gauthier Eppe","doi":"10.1021/jasms.4c00462","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a methodical procedure for optimizing laser desorption/ionization mass spectrometry (LDI-MS) supports using porous silicon (PSi) substrates. The approach involves the use of substituted benzyl-pyridinium salts (thermometer ions) to obtain one metric that assesses analyte fragmentation (the effective temperature of vibration). Porous silicon substrates were synthesized via electrochemical etching of p-type silicon wafers (10-20 mΩ·cm), with etching parameters adjusted to vary porosity while maintaining a layer thickness between 700 and 1200 nm. The results revealed that PSi substrates with 40-60% porosity achieved the lowest fragmentation levels. This finding was validated through the analysis of N-acetyl glucosamine, a carbohydrate, which confirmed the effective temperature trend. Further analysis involving peptides, specifically P14R and a peptide mix (Peptide Calibration Standard II, Bruker), demonstrated that the optimized PSi substrates enabled the desorption and ionization of peptides with a maximum mass at <i>m</i>/<i>z</i> 2465, corresponding to ACTH clip 1-17. These results highlight the critical role of substrate porosity in minimizing analyte fragmentation and enhancing LDI-MS performance.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00462","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a methodical procedure for optimizing laser desorption/ionization mass spectrometry (LDI-MS) supports using porous silicon (PSi) substrates. The approach involves the use of substituted benzyl-pyridinium salts (thermometer ions) to obtain one metric that assesses analyte fragmentation (the effective temperature of vibration). Porous silicon substrates were synthesized via electrochemical etching of p-type silicon wafers (10-20 mΩ·cm), with etching parameters adjusted to vary porosity while maintaining a layer thickness between 700 and 1200 nm. The results revealed that PSi substrates with 40-60% porosity achieved the lowest fragmentation levels. This finding was validated through the analysis of N-acetyl glucosamine, a carbohydrate, which confirmed the effective temperature trend. Further analysis involving peptides, specifically P14R and a peptide mix (Peptide Calibration Standard II, Bruker), demonstrated that the optimized PSi substrates enabled the desorption and ionization of peptides with a maximum mass at m/z 2465, corresponding to ACTH clip 1-17. These results highlight the critical role of substrate porosity in minimizing analyte fragmentation and enhancing LDI-MS performance.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives