Innovative computational approaches in drug discovery and design.

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-13 DOI:10.1016/bs.apha.2025.01.006
Itishree Jogamaya Das, Kalpita Bhatta, Itisam Sarangi, Himansu Bhusan Samal
{"title":"Innovative computational approaches in drug discovery and design.","authors":"Itishree Jogamaya Das, Kalpita Bhatta, Itisam Sarangi, Himansu Bhusan Samal","doi":"10.1016/bs.apha.2025.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>In the current scenario of pandemics, drug discovery and design have undergone a significant transformation due to the integration of advanced computational methodologies. These methodologies utilize sophisticated algorithms, machine learning, artificial intelligence, and high-performance computing to expedite the drug development process, enhances accuracy, and reduces costs. Machine learning and AI have revolutionized predictive modeling, virtual screening, and de novo drug design, allowing for the identification and optimization of novel compounds with desirable properties. Molecular dynamics simulations provide a detailed insight into protein-ligand interactions and conformational changes, facilitating an understanding of drug efficacy at the atomic level. Quantum mechanics/molecular mechanics methods offer precise predictions of binding energies and reaction mechanisms, while structure-based drug design employs docking studies and fragment-based design to improve drug-receptor binding affinities. Network pharmacology and systems biology approaches analyze polypharmacology and biological networks to identify novel drug targets and understand complex interactions. Cheminformatics explores vast chemical spaces and employs data mining to find patterns in large datasets. Computational toxicology predicts adverse effects early in development, reducing reliance on animal testing. Bioinformatics integrates genomic, proteomic, and metabolomics data to discover biomarkers and understand genetic variations affecting drug response. Lastly, cloud computing and big data technologies facilitate high-throughput screening and comprehensive data analysis. Collectively, these computational innovations are driving a paradigm shift in drug discovery and design, making it more efficient, accurate, and cost-effective.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.01.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

In the current scenario of pandemics, drug discovery and design have undergone a significant transformation due to the integration of advanced computational methodologies. These methodologies utilize sophisticated algorithms, machine learning, artificial intelligence, and high-performance computing to expedite the drug development process, enhances accuracy, and reduces costs. Machine learning and AI have revolutionized predictive modeling, virtual screening, and de novo drug design, allowing for the identification and optimization of novel compounds with desirable properties. Molecular dynamics simulations provide a detailed insight into protein-ligand interactions and conformational changes, facilitating an understanding of drug efficacy at the atomic level. Quantum mechanics/molecular mechanics methods offer precise predictions of binding energies and reaction mechanisms, while structure-based drug design employs docking studies and fragment-based design to improve drug-receptor binding affinities. Network pharmacology and systems biology approaches analyze polypharmacology and biological networks to identify novel drug targets and understand complex interactions. Cheminformatics explores vast chemical spaces and employs data mining to find patterns in large datasets. Computational toxicology predicts adverse effects early in development, reducing reliance on animal testing. Bioinformatics integrates genomic, proteomic, and metabolomics data to discover biomarkers and understand genetic variations affecting drug response. Lastly, cloud computing and big data technologies facilitate high-throughput screening and comprehensive data analysis. Collectively, these computational innovations are driving a paradigm shift in drug discovery and design, making it more efficient, accurate, and cost-effective.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信