Identifying novel drug targets with computational precision.

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI:10.1016/bs.apha.2025.01.003
Riya Dave, Pierpaolo Giordano, Sakshi Roy, Hiba Imran
{"title":"Identifying novel drug targets with computational precision.","authors":"Riya Dave, Pierpaolo Giordano, Sakshi Roy, Hiba Imran","doi":"10.1016/bs.apha.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Computational precision in drug discovery integrates algorithms and high-performance computing to analyze complex biological data with unprecedented accuracy, revolutionizing the identification of therapeutic targets. This process encompasses diverse computational and experimental approaches that enhance drug discovery's speed and precision. Advanced techniques like next-generation sequencing enable rapid genetic characterization, while proteomics explores protein expression and interactions driving disease progression. In-silico methods, including molecular docking, virtual screening, and pharmacophore modeling, predict interactions between small molecules and biological targets, accelerating early drug candidate identification. Structure-based drug design and molecular dynamics simulations refine drug designs by elucidating target structures and molecular behaviors. Ligand-based methods utilize known chemical properties to anticipate new compound activities. AI and machine learning optimizes data analysis, offering novel insights and improving predictive accuracy. Systems biology and network pharmacology provide a holistic view of biological networks, identifying critical nodes as potential drug targets, which traditional methods might overlook. Computational tools synergize with experimental techniques, enhancing the treatment of complex diseases with personalized medicine by tailoring therapies to individual patients. Ethical and regulatory compliance ensures clinical applicability, bridging computational predictions to effective therapies. This multi-dimensional approach marks a paradigm shift in modern medicine, delivering safer, more effective treatments with precision. By integrating bioinformatics, genomics, and proteomics, computational drug discovery has transformed how therapeutic interventions are developed, ensuring an era of personalized, efficient healthcare.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"231-263"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Computational precision in drug discovery integrates algorithms and high-performance computing to analyze complex biological data with unprecedented accuracy, revolutionizing the identification of therapeutic targets. This process encompasses diverse computational and experimental approaches that enhance drug discovery's speed and precision. Advanced techniques like next-generation sequencing enable rapid genetic characterization, while proteomics explores protein expression and interactions driving disease progression. In-silico methods, including molecular docking, virtual screening, and pharmacophore modeling, predict interactions between small molecules and biological targets, accelerating early drug candidate identification. Structure-based drug design and molecular dynamics simulations refine drug designs by elucidating target structures and molecular behaviors. Ligand-based methods utilize known chemical properties to anticipate new compound activities. AI and machine learning optimizes data analysis, offering novel insights and improving predictive accuracy. Systems biology and network pharmacology provide a holistic view of biological networks, identifying critical nodes as potential drug targets, which traditional methods might overlook. Computational tools synergize with experimental techniques, enhancing the treatment of complex diseases with personalized medicine by tailoring therapies to individual patients. Ethical and regulatory compliance ensures clinical applicability, bridging computational predictions to effective therapies. This multi-dimensional approach marks a paradigm shift in modern medicine, delivering safer, more effective treatments with precision. By integrating bioinformatics, genomics, and proteomics, computational drug discovery has transformed how therapeutic interventions are developed, ensuring an era of personalized, efficient healthcare.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信