Dominga Evangelista, Elliot Nelson, Rachael Skyner, Ben Tehan, Mattia Bernetti, Marinella Roberti, Maria Laura Bolognesi, Giovanni Bottegoni
{"title":"Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals.","authors":"Dominga Evangelista, Elliot Nelson, Rachael Skyner, Ben Tehan, Mattia Bernetti, Marinella Roberti, Maria Laura Bolognesi, Giovanni Bottegoni","doi":"10.1021/acs.jcim.4c02293","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, with a focus on pharmaceuticals. We employed a clustering strategy to provide a fair assessment of the model performances. By applying the generated model to a set of pharmaceutically relevant molecules, we aim to highlight potential PBT chemicals and extract PBT-relevant substructures. These substructures can serve as structural flags, alerting drug designers to potential environmental issues from the earliest stages of the drug discovery process. Incorporating these findings into pharmaceutical development workflows is expected to drive significant advancements in creating more environmentally friendly drug candidates while preserving their therapeutic efficacy.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.