Seungwoo Baek, Bogun Kim, Duleepa Pathiraja, In-Geol Choi
{"title":"Development of a Transposon-Based Genome Engineering Toolkit for Efficient and Adaptable Genetic Modifications in <i>Wolfiporia cocos</i>.","authors":"Seungwoo Baek, Bogun Kim, Duleepa Pathiraja, In-Geol Choi","doi":"10.1021/acssynbio.4c00766","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in genome engineering of fungal strains are rapidly progressing, driven by the increasing interest in fungal biotechnology. Given the unique genomic and cellular complexity of fungi, each strain benefits from a tailored toolkit for efficient genome engineering. Here, we present a transposon-based engineering toolkit specifically optimized for <i>Wolfiporia cocos</i>, a species valued for its bioactive compounds. This toolkit significantly improves transformation efficiency, enabling multiplexed gene integration and facilitating rapid, flexible prototyping by assembling multiple genes into transposomes in a cocktail format, which bypasses the need for an intricate genetic circuit assembly. Engineered strains demonstrated stable expression across generations, as confirmed by successful genomic integration. Additionally, we identified six native <i>W. cocos</i> promoters from transcriptomic data, with two showing robust, constitutive expression in the mycelium of engineered strains. This transposon-based toolkit offers a versatile resource for synthetic biology, supporting efficient and adaptable genetic modifications within fungal systems.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00766","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in genome engineering of fungal strains are rapidly progressing, driven by the increasing interest in fungal biotechnology. Given the unique genomic and cellular complexity of fungi, each strain benefits from a tailored toolkit for efficient genome engineering. Here, we present a transposon-based engineering toolkit specifically optimized for Wolfiporia cocos, a species valued for its bioactive compounds. This toolkit significantly improves transformation efficiency, enabling multiplexed gene integration and facilitating rapid, flexible prototyping by assembling multiple genes into transposomes in a cocktail format, which bypasses the need for an intricate genetic circuit assembly. Engineered strains demonstrated stable expression across generations, as confirmed by successful genomic integration. Additionally, we identified six native W. cocos promoters from transcriptomic data, with two showing robust, constitutive expression in the mycelium of engineered strains. This transposon-based toolkit offers a versatile resource for synthetic biology, supporting efficient and adaptable genetic modifications within fungal systems.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.