Carlo Manco, Delia Righi, Sara Locci, Guglielmo Lucchese, Nicola De Stefano, Domenico Plantone
{"title":"A Systematic Review Focusing on the Link between Engineered Nanoparticles and Neurodegeneration.","authors":"Carlo Manco, Delia Righi, Sara Locci, Guglielmo Lucchese, Nicola De Stefano, Domenico Plantone","doi":"10.1021/acschemneuro.5c00108","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered nanoparticles (ENPs) have widely revolutionized many fields, including medicine, technology, environmental science, and industry. However, with the wide use of ENPs in everyday life, concerns are increasingly being raised about their potential neurotoxic effects on the central nervous system (CNS), particularly in relation to neurodegeneration and neuroinflammation. The present systematic review focuses on reporting the current knowledge about the neurotoxic potential of ENPs, with particular attention to their mechanism of action in neuroinflammation and neurodegeneration. This PRISMA based systematic review encompassed studies from Pubmed, Embase, and Web of Science. Eligibility criteria included focusing on engineered NPs and their impacts on neuroinflammation, neurodegeneration, and neurotoxicity. Evidence shows that ENPs easily can cross the blood-brain barrier (BBB) inducing neuronal damage and neurotoxicity due to oxidative stress, inflammation, mitochondrial dysfunction, and cell death. Inflammation plays a crucial role in activating glial cells, such as microglia and astrocytes, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species (ROS). This increases the vulnerability of the brain to systemic inflammation. In conclusion, as ENP exposure continues to increase, understanding their long-term effects on the brain is fundamental to developing effective strategies to mitigate their impact on neuronal human health.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered nanoparticles (ENPs) have widely revolutionized many fields, including medicine, technology, environmental science, and industry. However, with the wide use of ENPs in everyday life, concerns are increasingly being raised about their potential neurotoxic effects on the central nervous system (CNS), particularly in relation to neurodegeneration and neuroinflammation. The present systematic review focuses on reporting the current knowledge about the neurotoxic potential of ENPs, with particular attention to their mechanism of action in neuroinflammation and neurodegeneration. This PRISMA based systematic review encompassed studies from Pubmed, Embase, and Web of Science. Eligibility criteria included focusing on engineered NPs and their impacts on neuroinflammation, neurodegeneration, and neurotoxicity. Evidence shows that ENPs easily can cross the blood-brain barrier (BBB) inducing neuronal damage and neurotoxicity due to oxidative stress, inflammation, mitochondrial dysfunction, and cell death. Inflammation plays a crucial role in activating glial cells, such as microglia and astrocytes, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species (ROS). This increases the vulnerability of the brain to systemic inflammation. In conclusion, as ENP exposure continues to increase, understanding their long-term effects on the brain is fundamental to developing effective strategies to mitigate their impact on neuronal human health.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research