A CMOS-Compatible Fabrication Approach for High-Performance Perovskite Photodetector Arrays

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Erfu Wu, Sergey Tsarev, Daria Proniakova, Xuqi Liu, Dominik Bachmann, Sergii Yakunin, Maksym V. Kovalenko, Ivan Shorubalko
{"title":"A CMOS-Compatible Fabrication Approach for High-Performance Perovskite Photodetector Arrays","authors":"Erfu Wu,&nbsp;Sergey Tsarev,&nbsp;Daria Proniakova,&nbsp;Xuqi Liu,&nbsp;Dominik Bachmann,&nbsp;Sergii Yakunin,&nbsp;Maksym V. Kovalenko,&nbsp;Ivan Shorubalko","doi":"10.1002/adom.202402979","DOIUrl":null,"url":null,"abstract":"<p>Lead halide perovskites (LHPs) have attracted significant attention for their exceptional optoelectronic properties, positioning them as prime candidates for next-generation electronics such as photodetectors (PDs), lasers, light-emitting diodes (LEDs), and memristors. However, integrating these materials into device architectures with CMOS-compatible technologies in a simple manner remains a critical challenge. This study introduces a universal method leveraging standard lithographic patterning to fabricate high-performance LHP PDs for red (R), green (G), and blue (B) color detection separately. Through optimization of the device stack and etching conditions, perovskite PDs are pixelated using a one-step lithography and pulsed argon (Ar) milling process. The resulting devices exhibit typical perovskite PD responsivity (0.3 A W<sup>−1</sup>), low dark current density (less than 10<sup>−6</sup> mA cm<sup>−2</sup>), high detectivity (over 10<sup>13</sup> Jones), and short fall time (sub-20 ns without bias). This approach not only enhances device performance but also paves the way for scalable production of perovskite-based optoelectronic devices. The versatility and effectiveness of this method highlight its potential for broad applicability in CMOS-compatible perovskite-based image sensor technology.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 10","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402979","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead halide perovskites (LHPs) have attracted significant attention for their exceptional optoelectronic properties, positioning them as prime candidates for next-generation electronics such as photodetectors (PDs), lasers, light-emitting diodes (LEDs), and memristors. However, integrating these materials into device architectures with CMOS-compatible technologies in a simple manner remains a critical challenge. This study introduces a universal method leveraging standard lithographic patterning to fabricate high-performance LHP PDs for red (R), green (G), and blue (B) color detection separately. Through optimization of the device stack and etching conditions, perovskite PDs are pixelated using a one-step lithography and pulsed argon (Ar) milling process. The resulting devices exhibit typical perovskite PD responsivity (0.3 A W−1), low dark current density (less than 10−6 mA cm−2), high detectivity (over 1013 Jones), and short fall time (sub-20 ns without bias). This approach not only enhances device performance but also paves the way for scalable production of perovskite-based optoelectronic devices. The versatility and effectiveness of this method highlight its potential for broad applicability in CMOS-compatible perovskite-based image sensor technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信