{"title":"Temperature Monitoring of Mass Concrete Structure Using Wireless Sensing System","authors":"Tengyi Wang, Dan Li, Jiajun Zhou, Jian Zhang","doi":"10.1155/stc/7847074","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Rapid temperature changes during the early stages of mass concrete construction can cause thermal cracking, which negatively impacts structural integrity and longevity. Reliable temperature monitoring is essential for effective crack control. Traditional methods, such as manual inspections and wired structural health monitoring systems, are often hindered by high labor costs and maintenance challenges, limiting their effectiveness for large-scale applications. This paper presents the development of a wireless temperature sensing system designed to overcome these challenges. Both the hardware and software architectures of the wireless sensing unit are detailed. The system is characterized by easy deployment, low power consumption, and long-distance wireless communication, making it suitable for large-scale monitoring of concrete structures. To address data anomalies caused by wireless transmission failures, the sensing system includes robust data anomaly detection and recovery algorithms, ensuring reliable measurements. A prototype system was fabricated and field-tested on a massive concrete structure, validating the effectiveness of the sensing system. The experimental results demonstrate that the wireless temperature sensing system can reliably monitor the temperature distribution of mass concrete structures during construction, providing measurement data for preventing thermal cracking and ensuring structural integrity.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/7847074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/7847074","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid temperature changes during the early stages of mass concrete construction can cause thermal cracking, which negatively impacts structural integrity and longevity. Reliable temperature monitoring is essential for effective crack control. Traditional methods, such as manual inspections and wired structural health monitoring systems, are often hindered by high labor costs and maintenance challenges, limiting their effectiveness for large-scale applications. This paper presents the development of a wireless temperature sensing system designed to overcome these challenges. Both the hardware and software architectures of the wireless sensing unit are detailed. The system is characterized by easy deployment, low power consumption, and long-distance wireless communication, making it suitable for large-scale monitoring of concrete structures. To address data anomalies caused by wireless transmission failures, the sensing system includes robust data anomaly detection and recovery algorithms, ensuring reliable measurements. A prototype system was fabricated and field-tested on a massive concrete structure, validating the effectiveness of the sensing system. The experimental results demonstrate that the wireless temperature sensing system can reliably monitor the temperature distribution of mass concrete structures during construction, providing measurement data for preventing thermal cracking and ensuring structural integrity.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.