{"title":"Generalized Gaussian Distribution Refined Composite Multiscale Fluctuation Dispersion Entropy and Its Application in Fault Diagnosis of Switch Machine","authors":"Deqiang He, Jinxin Wu, Yingqian Sun, Zhenzhen Jin","doi":"10.1155/stc/1806458","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The switch machine (SM) is an important device for turnout conversion, which is of great significance to ensure the safety of train operations. Refined composite multiscale dispersion entropy (RCMDE) is a formidable nonlinear characterization tool for time series signals, which has been applied to the fault diagnosis (FD) of switch machines. In fact, the lack of nonlinear mapping ability of RCMDE and the inability to evaluate the volatility of the SM signal affect its ability to extract features. To overcome its inherent drawbacks, a generalized Gaussian distribution refined composite multiscale fluctuation dispersion entropy (GGRCMFDE) is proposed to measure the complexity of the SM signal. In GGRCMFDE, first, the nonlinear mapping ability of the algorithm is improved by replacing the normal cumulative distribution function (NCDF) with the generalized Gaussian distribution (GGD). The fluctuation theory is introduced to evaluate the fluctuation of the signal to better adapt to the phenomenon of nonperiodic fluctuation of the signal when the SM fails. Through the above improvement, the feature extraction capability of the algorithm is comprehensively enhanced. Second, an FD method for the SM is used by combining the fault features extracted by GGRCMFDE with the support vector machine (SVM) for fault classification. Finally, the algorithm’s performance is guaranteed by improving dung beetle optimization (IDBO) algorithm, and the superiority of the diagnosis method is improved by using IDBO to optimize SVM; we name this method GGRCMFE–IDBO–SVM. It is verified by the actual operation scene experiment of the switch machines. The experiment shows that compared to the other algorithms, the FD impact of GGRCMFE–IDBO–SVM is significant, and a taller fault identification precision can be obtained.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1806458","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/1806458","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The switch machine (SM) is an important device for turnout conversion, which is of great significance to ensure the safety of train operations. Refined composite multiscale dispersion entropy (RCMDE) is a formidable nonlinear characterization tool for time series signals, which has been applied to the fault diagnosis (FD) of switch machines. In fact, the lack of nonlinear mapping ability of RCMDE and the inability to evaluate the volatility of the SM signal affect its ability to extract features. To overcome its inherent drawbacks, a generalized Gaussian distribution refined composite multiscale fluctuation dispersion entropy (GGRCMFDE) is proposed to measure the complexity of the SM signal. In GGRCMFDE, first, the nonlinear mapping ability of the algorithm is improved by replacing the normal cumulative distribution function (NCDF) with the generalized Gaussian distribution (GGD). The fluctuation theory is introduced to evaluate the fluctuation of the signal to better adapt to the phenomenon of nonperiodic fluctuation of the signal when the SM fails. Through the above improvement, the feature extraction capability of the algorithm is comprehensively enhanced. Second, an FD method for the SM is used by combining the fault features extracted by GGRCMFDE with the support vector machine (SVM) for fault classification. Finally, the algorithm’s performance is guaranteed by improving dung beetle optimization (IDBO) algorithm, and the superiority of the diagnosis method is improved by using IDBO to optimize SVM; we name this method GGRCMFE–IDBO–SVM. It is verified by the actual operation scene experiment of the switch machines. The experiment shows that compared to the other algorithms, the FD impact of GGRCMFE–IDBO–SVM is significant, and a taller fault identification precision can be obtained.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.