Jan N. Fuhg, Govinda Anantha Padmanabha, Nikolaos Bouklas, Bahador Bahmani, WaiChing Sun, Nikolaos N. Vlassis, Moritz Flaschel, Pietro Carrara, Laura De Lorenzis
{"title":"A Review on Data-Driven Constitutive Laws for Solids","authors":"Jan N. Fuhg, Govinda Anantha Padmanabha, Nikolaos Bouklas, Bahador Bahmani, WaiChing Sun, Nikolaos N. Vlassis, Moritz Flaschel, Pietro Carrara, Laura De Lorenzis","doi":"10.1007/s11831-024-10196-2","DOIUrl":null,"url":null,"abstract":"<div><p>This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiment, verification, and validation.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 3","pages":"1841 - 1883"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10196-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiment, verification, and validation.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.