The moduli space of flat maximal space-like embeddings in pseudo-hyperbolic space

IF 0.6 3区 数学 Q3 MATHEMATICS
Nicholas Rungi, Andrea Tamburelli
{"title":"The moduli space of flat maximal space-like embeddings in pseudo-hyperbolic space","authors":"Nicholas Rungi,&nbsp;Andrea Tamburelli","doi":"10.1007/s10455-025-09994-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the moduli space of flat maximal space-like embeddings in <span>\\({\\mathbb {H}}^{2,2}\\)</span> from various aspects. We first describe the associated Codazzi tensors to the embedding in the general setting, and then, we introduce a family of pseudo-Kähler metrics on the moduli space. We show the existence of two Hamiltonian actions with associated moment maps and use them to find a geometric global Darboux frame for any symplectic form in the above family.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09994-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09994-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the moduli space of flat maximal space-like embeddings in \({\mathbb {H}}^{2,2}\) from various aspects. We first describe the associated Codazzi tensors to the embedding in the general setting, and then, we introduce a family of pseudo-Kähler metrics on the moduli space. We show the existence of two Hamiltonian actions with associated moment maps and use them to find a geometric global Darboux frame for any symplectic form in the above family.

伪双曲空间中平面极大类空嵌入的模空间
我们从各个方面研究了\({\mathbb {H}}^{2,2}\)中平面极大类空嵌入的模空间。我们首先在一般情况下描述与嵌入相关的Codazzi张量,然后在模空间上引入pseudo-Kähler度量族。我们证明了两个具有相关矩映射的哈密顿作用的存在性,并利用它们找到了上述族中任何辛形式的几何全局达布坐标系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信